常用算法Java实现之希尔排序
希尔排序严格来说是基于插入排序的思想,又被称为缩小增量排序。
具体流程如下:
1、将包含n个元素的数组,分成n/2个数组序列,第一个数据和第n/2+1个数据为一对...
2、对每对数据进行比较和交换,排好顺序;
3、然后分成n/4个数组序列,再次排序;
4、不断重复以上过程,随着序列减少并直至为1,排序完成。
假如有初始数据:25 11 45 26 12 78。
1、第一轮排序,将该数组分成 6/2=3 个数组序列,第1个数据和第4个数据为一对,第2个数据和第5个数据为一对,第3个数据和第6个数据为一对,每对数据进行比较排序,排序后顺序为:[25, 11, 45, 26, 12, 78]。
2、第二轮排序 ,将上轮排序后的数组分成6/4=1个数组序列,此时逐个对数据比较,按照插入排序对该数组进行排序,排序后的顺序为:[11, 12, 25, 26, 45, 78]。
对于插入排序而言,如果原数组是基本有序的,那排序效率就可大大提高。另外,对于数量较小的序列使用直接插入排序,会因需要移动的数据量少,其效率也会提高。因此,希尔排序具有较高的执行效率。
希尔排序并不稳定,O(1)的额外空间,时间复杂度为O(N*(logN)^2)
public class Main {
public static void main(String args[]) {int[] data = new int[] { 26, 53, 67, 48, 57, 13, 48, 32, 60, 50 };
//设置缩减段
for(int i=data.length/2;i>0;i=i/2) {
//遍历
for(int k=0;k<data.length;k++) {
//找出调换的两个数字的位置
for(int j=k;j<data.length-i;j=j+i) {
if(data[j]<data[j+i]) {
int t=data[j];
data[j]=data[j+i];
data[j+i]=t;
}
}
}
}
for(int i=0;i<data.length;i++) {
System.out.print(data[i]+" ");//排序后的打印输出
}
}
}