背包思想衍生算法

这篇博客探讨了如何使用背包思想来解决数组中存在若干个数之和等于其他若干个数之和的问题。通过01背包的思想,通过双重循环更新f[x]表示背包容量为x时的最大价值,从而找到符合条件的子集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个数组  在数组中是否存在若干个数之和等于其他若干个数之和

如 a[]={1, 2, 3, 4}  得到 1 + 4 = 3 + 2 


可由背包思想衍生


01背包思想如下:

  1. int f[w+1];   //f[x] 表示背包容量为x 时的最大价值
  2. for (int i=0; i<n; i++)  
  3.     for (int j=w; j>=size[i]; j--)  
  4.         f[j] = max(f[j], f[j-size[i]]+value[i]);  


代码如下:

int max(int a, int b)
{
        if(a == b) flag = 1; //如果存在两种相同的方案,则flag改变为1 
        return a > b ? a : b;
}

void work()
{
    for(int i =  0; i < n; i++){
        for(int j = count; j > a[i];  j--)
            a[i] = max(a[i], a[i - a[i]] + a[i]);
    }

        if(flag)  printf("YES!"); 若存在 则输出 YES!
    	else printf("NO!"); 若不存在 则输出 NO!
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值