sklearn曲折

本文介绍了Python科学计算中常用库的安装顺序:首先安装numpy+mkl,随后是scipy,接着是matplotlib,最后安装sklearn。这些库是进行数据分析和机器学习的基础。
部署运行你感兴趣的模型镜像

所需 依赖库,及其顺序:四个软件的安装顺序是:numpy+mkl      scipy    matplotlib  sklearn

您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

分析一下这个结果。这是分析的结果。step1结果 C:\Users\admin\miniconda3\envs\aisenv\python.exe D:\file\ShipTrack\src\step1preprocess.py ============================================================ Step 1: 数据预处理与质量控制 ============================================================ [1/6] 读取数据: D:\file\ShipTrack\data.csv 原始数据: 20831 行, 9 列 列名: ['mmsi', 'acqtime', 'cog', 'latitude', 'longitude', 'speed', 'status', 'truehead', 'mmsi_mark'] [2/6] 标准化列名... 标准化后列名: ['mmsi', 'acqtime', 'cog', 'lat', 'lon', 'speed', 'status', 'truehead', 'mmsi_mark'] [3/6] 解析时间字段... [4/6] 排序数据... [5/6] 基础质量控制... 基础QC过滤: 10704 行 (剩余 10127) [6/6] 计算相邻点特征... 高级QC过滤: 6 行 (剩余 10121) [7/7] 保存清洗数据... ============================================================ 预处理完成! ============================================================ 输出文件: D:\file\ShipTrack\interim\clean_points.parquet 最终数据: 10121 行 涉及船舶段: 42 个 涉及MMSI: 29 个 时间范围: 2024-02-01 00:33:23 至 2024-04-23 05:31:17 保留字段: mmsi acq_time cog lat lon speed status true_head mmsi_mark dt_s step_nm v_calc 进程已结束,退出代码为 0 step2结果 C:\Users\admin\miniconda3\envs\ais_env\python.exe D:\file\ShipTrack\src\step2_features.py ============================================================ Step 2: 特征提取 ============================================================ [1/5] 读取清洗数据: D:\file\ShipTrack\interim\clean_points.parquet 数据: 10121 行, 42 个轨迹段 [2/5] 准备特征计算... [3/5] 按mmsi_mark提取特征... [4/5] 构建特征表... [5/5] 保存特征数据... ============================================================ 特征提取完成! ============================================================ 输出文件: D:\file\ShipTrack\processed\features.parquet 特征数量: 42 行 × 17 列 涉及MMSI: 29 个 特征统计: mean_speed sinuosity turn_rate_mean work_ratio total_dist_nm count 42.000000 42.000000 42.000000 42.000000 42.000000 mean 28.719872 4.016463 13.762820 0.116651 61.607438 std 21.434055 9.245494 27.966457 0.274748 252.409980 min 1.000000 1.000000 0.000000 0.000000 0.000000 25% 8.643411 1.000000 2.650157 0.000000 0.398144 50% 21.852941 1.001454 6.885642 0.000000 8.852564 75% 51.927083 1.455251 13.167742 0.012566 30.790647 max 60.000000 48.238806 175.500000 1.000000 1641.711900 ✓ Step 2 完成,可以运行 Step 3 进程已结束,退出代码为 0 step3结果 C:\Users\admin\miniconda3\envs\ais_env\python.exe D:\file\ShipTrack\src\step3_cluster.py ============================================================ Step 3: 聚类推断行为类型 ============================================================ [1/6] 读取特征数据: D:\file\ShipTrack\processed\features.parquet 特征数据: 42 行 [2/6] 规则识别静止段... 识别静止段: 0 个 (0.0%) [3/6] 对非静止段进行GMM聚类 (n_clusters=3)... 待聚类样本: 42 个 C:\Users\admin\miniconda3\envs\ais_env\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn( C:\Users\admin\miniconda3\envs\ais_env\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn( C:\Users\admin\miniconda3\envs\ais_env\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn( C:\Users\admin\miniconda3\envs\ais_env\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn( C:\Users\admin\miniconda3\envs\ais_env\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn( C:\Users\admin\miniconda3\envs\ais_env\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn( C:\Users\admin\miniconda3\envs\ais_env\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn( C:\Users\admin\miniconda3\envs\ais_env\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn( C:\Users\admin\miniconda3\envs\ais_env\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn( C:\Users\admin\miniconda3\envs\ais_env\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn( [4/6] 分析聚类中心... 聚类中心统计: cluster_id count mean_speed sinuosity turn_rate_mean work_ratio 2 5 6.768500 1.283111 45.337353 0.815557 0 7 10.499661 18.494289 8.021113 0.076327 1 30 36.629817 1.093862 9.840129 0.009575 [5/6] 映射为语义标签... Cluster 2 (5 个) -> Inferred_FishingLike Cluster 0 (7 个) -> Inferred_OtherWork Cluster 1 (30 个) -> Inferred_TransportLike [6/6] 保存聚类结果... ============================================================ 聚类推断完成! ============================================================ 输出文件: D:\file\ShipTrack\processed\clustered.parquet 总样本数: 42 行为类型分布: Inferred_TransportLike: 30 (71.4%) Inferred_OtherWork: 7 (16.7%) Inferred_FishingLike: 5 (11.9%) 聚类概率统计: count 42.000000 mean 0.995697 std 0.027805 min 0.819789 25% 1.000000 50% 1.000000 75% 1.000000 max 1.000000 Name: cluster_prob, dtype: float64 ✓ Step 3 完成,可以运行 Step 4 进程已结束,退出代码为 0 step4结果 C:\Users\admin\miniconda3\envs\ais_env\python.exe D:\file\ShipTrack\src\step4_detect.py ============================================================ Step 4: 异常检测 ============================================================ [1/5] 读取聚类数据: D:\file\ShipTrack\processed\clustered.parquet 数据: 42 行, 29 个MMSI [2/5] 检测跨模式语义冲突... 跨类型冲突异常: 0 个 反向跨类型冲突: 1 个 [3/5] 检测同类内部离群 (contamination=0.01)... [4/5] 生成异常报表... [5/5] 保存异常报表... ============================================================ 异常检测完成! ============================================================ 输出文件: D:\file\ShipTrack\results\anomalies.csv 总样本数: 42 异常样本数: 1 (2.38%) 异常类型分布: CrossTypeConflict_Reverse: 1 异常分数统计: count 1.0 mean 1.0 std NaN min 1.0 25% 1.0 50% 1.0 75% 1.0 max 1.0 Name: anomaly_score, dtype: float64 Top 5 异常案例: mmsi mmsi_mark inferred_label anomaly_reason anomaly_score 620992000 53 Inferred_TransportLike CrossTypeConflict_Reverse 1.0 ✓ Step 4 完成,所有处理步骤已完成! 最终异常报表: D:\file\ShipTrack\results\anomalies.csv 进程已结束,退出代码为 0
最新发布
12-25
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值