【笔记】argparse —— 命令行选项、参数和子命令解析器(3)

16.4.3. add_argument() 方法

ArgumentParser.add_argument(name or flags...[, action][, nargs][, const][, default][, type][, choices][, required][, help][, metavar][, dest])

定义单个的命令行参数应当如何解析。每个形参都在下面有它自己更多的描述,长话短说有:

  • name or flags - 一个命名或者一个选项字符串的列表,例如 foo-f, --foo

  • action - 当参数在命令行中出现时使用的动作基本类型。

  • nargs - 命令行参数应当消耗的数目。

  • const - 被一些 actionnargs 选择所需求的常数。

  • default - 当参数未在命令行中出现时使用的值。

  • type - 命令行参数应当被转换成的类型。

  • choices - 可用的参数的容器。

  • required - 此命令行选项是否可省略 (仅选项可用)。

  • help - 一个此选项作用的简单描述。

  • metavar - 在使用方法消息中使用的参数值示例。

  • dest - 被添加到 parse_args() 所返回对象上的属性名。

以下部分描述这些参数如何使用。

16.4.3.1. name or flags

add_argument() 方法必须知道它是否是一个选项,例如 -f--foo,或是一个位置参数,例如一组文件名。第一个传递给 add_argument() 的参数必须是一系列 flags 或者是一个简单的参数名。例如,可以选项可以被这样创建:

>>>

>>> parser.add_argument('-f', '--foo')

而位置参数可以这么创建:

>>>

>>> parser.add_argument('bar')

parse_args() 被调用,选项会以 - 前缀识别,剩下的参数则会被假定为位置参数:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-f', '--foo')
>>> parser.add_argument('bar')
>>> parser.parse_args(['BAR'])
Namespace(bar='BAR', foo=None)
>>> parser.parse_args(['BAR', '--foo', 'FOO'])
Namespace(bar='BAR', foo='FOO')
>>> parser.parse_args(['--foo', 'FOO'])
usage: PROG [-h] [-f FOO] bar
PROG: error: the following arguments are required: bar

16.4.3.2. action

ArgumentParser 对象将命令行参数与动作相关联。这些动作可以做与它们相关联的命令行参数的任何事,尽管大多数动作只是简单的向 parse_args() 返回的对象上添加属性。action 命名参数指定了这个命令行参数应当如何处理。供应的动作有:

  • 'store' - 存储参数的值。这是默认的动作。例如:

    >>>
    >>> parser = argparse.ArgumentParser()
    >>> parser.add_argument('--foo')
    >>> parser.parse_args('--foo 1'.split())
    Namespace(foo='1')
    
  • 'store_const' - 存储被 const 命名参数指定的值。 'store_const' 动作通常用在选项中来指定一些标志。例如:

    >>>
    >>> parser = argparse.ArgumentParser()
    >>> parser.add_argument('--foo', action='store_const', const=42)
    >>> parser.parse_args(['--foo'])
    Namespace(foo=42)
    
  • 'store_true' and 'store_false' - 这些是 'store_const' 分别用作存储 TrueFalse 值的特殊用例。另外,它们的默认值分别为 FalseTrue。例如:

    >>>
    >>> parser = argparse.ArgumentParser()
    >>> parser.add_argument('--foo', action='store_true')
    >>> parser.add_argument('--bar', action='store_false')
    >>> parser.add_argument('--baz', action='store_false')
    >>> parser.parse_args('--foo --bar'.split())
    Namespace(foo=True, bar=False, baz=True)
    
  • 'append' - 存储一个列表,并且将每个参数值追加到列表中。在允许多次使用选项时很有用。例如:

    >>>
    >>> parser = argparse.ArgumentParser()
    >>> parser.add_argument('--foo', action='append')
    >>> parser.parse_args('--foo 1 --foo 2'.split())
    Namespace(foo=['1', '2'])
    
  • 'append_const' - 这存储一个列表,并将 const 命名参数指定的值追加到列表中。(注意 const 命名参数默认为 None。)``’append_const’`` 动作一般在多个参数需要在同一列表中存储常数时会有用。例如:

    >>>
    >>> parser = argparse.ArgumentParser()
    >>> parser.add_argument('--str', dest='types', action='append_const', const=str)
    >>> parser.add_argument('--int', dest='types', action='append_const', const=int)
    >>> parser.parse_args('--str --int'.split())
    Namespace(types=[<class 'str'>, <class 'int'>])
    
  • 'count' - 计算一个关键字参数出现的数目或次数。例如,对于一个增长的详情等级来说有用:

    >>>
    >>> parser = argparse.ArgumentParser()
    >>> parser.add_argument('--verbose', '-v', action='count')
    >>> parser.parse_args(['-vvv'])
    Namespace(verbose=3)
    
  • 'help' - 打印所有当前解析器中的选项和参数的完整帮助信息,然后退出。默认情况下,一个 help 动作会被自动加入解析器。关于输出是如何创建的,参与 ArgumentParser

  • 'version' - 期望有一个 version= 命名参数在 add_argument() 调用中,并打印版本信息并在调用后退出:

    >>>
    >>> import argparse
    >>> parser = argparse.ArgumentParser(prog='PROG')
    >>> parser.add_argument('--version', action='version', version='%(prog)s 2.0')
    >>> parser.parse_args(['--version'])
    PROG 2.0
    

您还可以通过传递 Action 子类或实现相同接口的其他对象来指定任意操作。建议的方法是扩展 Action,覆盖 __call__ 方法和可选的 __init__ 方法。

一个自定义动作的例子:

>>>

>>> class FooAction(argparse.Action):
...     def __init__(self, option_strings, dest, nargs=None, **kwargs):
...         if nargs is not None:
...             raise ValueError("nargs not allowed")
...         super(FooAction, self).__init__(option_strings, dest, **kwargs)
...     def __call__(self, parser, namespace, values, option_string=None):
...         print('%r %r %r' % (namespace, values, option_string))
...         setattr(namespace, self.dest, values)
...
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action=FooAction)
>>> parser.add_argument('bar', action=FooAction)
>>> args = parser.parse_args('1 --foo 2'.split())
Namespace(bar=None, foo=None) '1' None
Namespace(bar='1', foo=None) '2' '--foo'
>>> args
Namespace(bar='1', foo='2')

更多描述,见 Action

16.4.3.3. nargs

ArgumentParser 对象通常关联一个单独的命令行参数到一个单独的被执行的动作。 nargs 命名参数关联不同数目的命令行参数到单一动作。支持的值有:

  • N (一个整数)。命令行中的 N 个参数会被聚集到一个列表中。 例如:

    >>>
    >>> parser = argparse.ArgumentParser()
    >>> parser.add_argument('--foo', nargs=2)
    >>> parser.add_argument('bar', nargs=1)
    >>> parser.parse_args('c --foo a b'.split())
    Namespace(bar=['c'], foo=['a', 'b'])
    

    注意 nargs=1 会产生一个单元素列表。这和默认的元素本身是不同的。

  • '?'。如果可能的话,会从命令行中消耗一个参数,并产生一个单一项。如果当前没有命令行参数,则会产生 default 值。注意,对于选项,有另外的用例 - 选项字符串出现但没有跟随命令行参数,则会产生 const 值。一些说用用例:

    >>>
    >>> parser = argparse.ArgumentParser()
    >>> parser.add_argument('--foo', nargs='?', const='c', default='d')
    >>> parser.add_argument('bar', nargs='?', default='d')
    >>> parser.parse_args(['XX', '--foo', 'YY'])
    Namespace(bar='XX', foo='YY')
    >>> parser.parse_args(['XX', '--foo'])
    Namespace(bar='XX', foo='c')
    >>> parser.parse_args([])
    Namespace(bar='d', foo='d')
    

    nargs='?' 的一个更普遍用法是允许可选的输入或输出文件:

    >>>
    >>> parser = argparse.ArgumentParser()
    >>> parser.add_argument('infile', nargs='?', type=argparse.FileType('r'),
    ...                     default=sys.stdin)
    >>> parser.add_argument('outfile', nargs='?', type=argparse.FileType('w'),
    ...                     default=sys.stdout)
    >>> parser.parse_args(['input.txt', 'output.txt'])
    Namespace(infile=<_io.TextIOWrapper name='input.txt' encoding='UTF-8'>,
              outfile=<_io.TextIOWrapper name='output.txt' encoding='UTF-8'>)
    >>> parser.parse_args([])
    Namespace(infile=<_io.TextIOWrapper name='<stdin>' encoding='UTF-8'>,
              outfile=<_io.TextIOWrapper name='<stdout>' encoding='UTF-8'>)
    
  • '*'。所有当前命令行参数被聚集到一个列表中。注意通过 nargs='*' 来实现多个位置参数通常没有意义,但是多个选项是可能的。例如:

    >>>
    >>> parser = argparse.ArgumentParser()
    >>> parser.add_argument('--foo', nargs='*')
    >>> parser.add_argument('--bar', nargs='*')
    >>> parser.add_argument('baz', nargs='*')
    >>> parser.parse_args('a b --foo x y --bar 1 2'.split())
    Namespace(bar=['1', '2'], baz=['a', 'b'], foo=['x', 'y'])
    

注:

 

  • '+'。和 '*' 类似,所有当前命令行参数被聚集到一个列表中。另外,当前没有至少一个命令行参数时会产生一个错误信息。例如:

    >>>
    >>> parser = argparse.ArgumentParser(prog='PROG')
    >>> parser.add_argument('foo', nargs='+')
    >>> parser.parse_args(['a', 'b'])
    Namespace(foo=['a', 'b'])
    >>> parser.parse_args([])
    usage: PROG [-h] foo [foo ...]
    PROG: error: the following arguments are required: foo
    
  • argarse.REMAINDER。所有剩余的命令行参数被聚集到一个列表中。这通常在从一个命令行功能传递参数到另一个命令行功能中时有用:

    >>>
    >>> parser = argparse.ArgumentParser(prog='PROG')
    >>> parser.add_argument('--foo')
    >>> parser.add_argument('command')
    >>> parser.add_argument('args', nargs=argparse.REMAINDER)
    >>> print(parser.parse_args('--foo B cmd --arg1 XX ZZ'.split()))
    Namespace(args=['--arg1', 'XX', 'ZZ'], command='cmd', foo='B')
    

如果不提供 nargs 命名参数,则消耗参数的数目将被 action 决定。通常这意味着单一项目(非列表)消耗单一命令行参数。

16.4.3.4. const

add_argument() 的``const`` 参数用于保存不从命令行中读取但被各种 ArgumentParser 动作需求的常数值。最常用的两例为:

  • add_argument() 通过 action='store_const'action='append_const 调用时。这些动作将 const 值添加到 parse_args() 返回的对象的属性中。在 action 的描述中查看案例。

  • add_argument() 通过选项(例如 -f--foo)调用并且 nargs='?' 时。这会创建一个可以跟随零个或一个命令行参数的选项。当解析命令行时,如果选项后没有参数,则将用 const 代替。在 nargs 描述中查看案例。

'store_const''append_const' 动作, const 命名参数必须给出。对其他动作,默认为 None

16.4.3.5. 默认值

所有选项和一些位置参数可能在命令行中被忽略。add_argument() 的命名参数 default,默认值为 None,指定了在命令行参数未出现时应当使用的值。对于选项, default 值在选项未在命令行中出现时使用:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default=42)
>>> parser.parse_args(['--foo', '2'])
Namespace(foo='2')
>>> parser.parse_args([])
Namespace(foo=42)

如果 default 值是一个字符串,解析器解析此值就像一个命令行参数。特别是,在将属性设置在 Namespace 的返回值之前,解析器应用任何提供的 type 转换参数。否则解析器使用原值:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--length', default='10', type=int)
>>> parser.add_argument('--width', default=10.5, type=int)
>>> parser.parse_args()
Namespace(length=10, width=10.5)

对于 nargs 等于 ?* 的位置参数, default 值在没有命令行参数出现时使用。

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('foo', nargs='?', default=42)
>>> parser.parse_args(['a'])
Namespace(foo='a')
>>> parser.parse_args([])
Namespace(foo=42)

提供 default=argparse.SUPPRESS 导致命令行参数未出现时没有属性被添加:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default=argparse.SUPPRESS)
>>> parser.parse_args([])
Namespace()
>>> parser.parse_args(['--foo', '1'])
Namespace(foo='1')

16.4.3.6. type – 类型

默认情况下,ArgumentParser 对象将命令行参数当作简单字符串读入。然而,命令行字符串经常需要被当作其它的类型,比如 float 或者 intadd_argument()type 关键词参数允许任何的类型检查和类型转换。一般的内建类型和函数可以直接被 type 参数使用。

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('foo', type=int)
>>> parser.add_argument('bar', type=open)
>>> parser.parse_args('2 temp.txt'.split())
Namespace(bar=<_io.TextIOWrapper name='temp.txt' encoding='UTF-8'>, foo=2)

type 参数被应用到默认参数时,请参考 default 参数的部分。

为方便使用不同类型的文件,argparse 模块提供了 FileType 工厂类,该类接受 mode=, bufsize=, encoding=errors=open() 函数参数。 例如,FileType('w') 可被用来创建一个可写文件:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('bar', type=argparse.FileType('w'))
>>> parser.parse_args(['out.txt'])
Namespace(bar=<_io.TextIOWrapper name='out.txt' encoding='UTF-8'>)

type= 可接受任意可调用对象,该对象应传入单个字符串参数并返回转换后的值:

>>>

>>> def perfect_square(string):
...     value = int(string)
...     sqrt = math.sqrt(value)
...     if sqrt != int(sqrt):
...         msg = "%r is not a perfect square" % string
...         raise argparse.ArgumentTypeError(msg)
...     return value
...
>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('foo', type=perfect_square)
>>> parser.parse_args(['9'])
Namespace(foo=9)
>>> parser.parse_args(['7'])
usage: PROG [-h] foo
PROG: error: argument foo: '7' is not a perfect square

choices 关键词参数可能会使类型检查者更方便的检查一个范围的值。

>>>

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('foo', type=int, choices=range(5, 10))
>>> parser.parse_args(['7'])
Namespace(foo=7)
>>> parser.parse_args(['11'])
usage: PROG [-h] {5,6,7,8,9}
PROG: error: argument foo: invalid choice: 11 (choose from 5, 6, 7, 8, 9)

详情请查阅 choices 段落。

16.4.3.7. choices

某些命令行参数应当从一组受限值中选择。 这可通过将一个容器对象作为 choices 关键字参数传给 add_argument() 来处理。 当执行命令行解析时,参数值将被检查,如果参数不是可接受的值之一就将显示错误消息:

>>>

>>> parser = argparse.ArgumentParser(prog='game.py')
>>> parser.add_argument('move', choices=['rock', 'paper', 'scissors'])
>>> parser.parse_args(['rock'])
Namespace(move='rock')
>>> parser.parse_args(['fire'])
usage: game.py [-h] {rock,paper,scissors}
game.py: error: argument move: invalid choice: 'fire' (choose from 'rock',
'paper', 'scissors')

请注意 choices 容器包含的内容会在执行任意 type 转换之后被检查,因此 choices 容器中对象的类型应当与指定的 type 相匹配:

>>>

>>> parser = argparse.ArgumentParser(prog='doors.py')
>>> parser.add_argument('door', type=int, choices=range(1, 4))
>>> print(parser.parse_args(['3']))
Namespace(door=3)
>>> parser.parse_args(['4'])
usage: doors.py [-h] {1,2,3}
doors.py: error: argument door: invalid choice: 4 (choose from 1, 2, 3)

任何支持 in 运算符的对象都可作为 choices 值传入,因此 dict 对象,set 对象,自定义容器等都是受支持的。

16.4.3.8. required

通常,argparse 模块会认为 -f--bar 等旗标是指明 可选的 参数,它们总是可以在命令行中被忽略。 要让一个选项成为 必需的,则可以将 True 作为 required= 关键字参数传给 add_argument():

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', required=True)
>>> parser.parse_args(['--foo', 'BAR'])
Namespace(foo='BAR')
>>> parser.parse_args([])
usage: argparse.py [-h] [--foo FOO]
argparse.py: error: option --foo is required

如这个例子所示,如果一个选项被标记为 required,则当该选项未在命令行中出现时,parse_args() 将会报告一个错误。

注解

必需的选项通常被认为是不适宜的,因为用户会预期 options 都是 可选的,因此在可能的情况下应当避免使用它们。

16.4.3.9. help

help 值是一个包含参数简短描述的字符串。 当用户请求帮助时(一般是通过在命令行中使用 -h--help 的方式),这些 help 描述将随每个参数一同显示:

>>>

>>> parser = argparse.ArgumentParser(prog='frobble')
>>> parser.add_argument('--foo', action='store_true',
...                     help='foo the bars before frobbling')
>>> parser.add_argument('bar', nargs='+',
...                     help='one of the bars to be frobbled')
>>> parser.parse_args(['-h'])
usage: frobble [-h] [--foo] bar [bar ...]

positional arguments:
 bar     one of the bars to be frobbled

optional arguments:
 -h, --help  show this help message and exit
 --foo   foo the bars before frobbling

help 字符串可包括各种格式描述符以避免重复使用程序名称或参数 default 等文本。 有效的描述符包括程序名称 %(prog)s 和传给 add_argument() 的大部分关键字参数,例如 %(default)s, %(type)s 等等:

>>>

>>> parser = argparse.ArgumentParser(prog='frobble')
>>> parser.add_argument('bar', nargs='?', type=int, default=42,
...                     help='the bar to %(prog)s (default: %(default)s)')
>>> parser.print_help()
usage: frobble [-h] [bar]

positional arguments:
 bar     the bar to frobble (default: 42)

optional arguments:
 -h, --help  show this help message and exit

由于帮助字符串支持 %-formatting,如果你希望在帮助字符串中显示 % 字面值,你必须将其转义为 %%

argparse 支持静默特定选项的帮助,具体做法是将 help 的值设为 argparse.SUPPRESS:

>>>

>>> parser = argparse.ArgumentParser(prog='frobble')
>>> parser.add_argument('--foo', help=argparse.SUPPRESS)
>>> parser.print_help()
usage: frobble [-h]

optional arguments:
  -h, --help  show this help message and exit

16.4.3.10. metavar

ArgumentParser 生成帮助消息时,它需要用某种方式来引用每个预期的参数。 默认情况下,ArgumentParser 对象使用 dest 值作为每个对象的 “name”。 默认情况下,对于位置参数动作,dest 值将被直接使用,而对于可选参数动作,dest 值将被转为大写形式。 因此,一个位置参数 dest='bar' 的引用形式将为 bar。 一个带有单独命令行参数的可选参数 --foo 的引用形式将为 FOO。 示例如下:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> parser.add_argument('bar')
>>> parser.parse_args('X --foo Y'.split())
Namespace(bar='X', foo='Y')
>>> parser.print_help()
usage:  [-h] [--foo FOO] bar

positional arguments:
 bar

optional arguments:
 -h, --help  show this help message and exit
 --foo FOO

可以使用 metavar 来指定一个替代名称:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', metavar='YYY')
>>> parser.add_argument('bar', metavar='XXX')
>>> parser.parse_args('X --foo Y'.split())
Namespace(bar='X', foo='Y')
>>> parser.print_help()
usage:  [-h] [--foo YYY] XXX

positional arguments:
 XXX

optional arguments:
 -h, --help  show this help message and exit
 --foo YYY

请注意 metavar 仅改变 显示的 名称 - parse_args() 对象的属性名称仍然会由 dest 值确定。

不同的 nargs 值可能导致 metavar 被多次使用。 提供一个元组给 metavar 即为每个参数指定不同的显示信息:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x', nargs=2)
>>> parser.add_argument('--foo', nargs=2, metavar=('bar', 'baz'))
>>> parser.print_help()
usage: PROG [-h] [-x X X] [--foo bar baz]

optional arguments:
 -h, --help     show this help message and exit
 -x X X
 --foo bar baz

16.4.3.11. dest

大多数 ArgumentParser 动作会添加一些值作为 parse_args() 所返回对象的一个属性。 该属性的名称由 add_argument()dest 关键字参数确定。 对于位置参数动作,dest 通常会作为 add_argument() 的第一个参数提供:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('bar')
>>> parser.parse_args(['XXX'])
Namespace(bar='XXX')

对于可选参数动作,dest 的值通常取自选项字符串。 ArgumentParser 会通过接受第一个长选项字符串并去掉开头的 -- 字符串来生成 dest 的值。 如果没有提供长选项字符串,则 dest 将通过接受第一个短选项字符串并去掉开头的 - 字符来获得。 任何内部的 - 字符都将被转换为 _ 字符以确保字符串是有效的属性名称。 下面的例子显示了这种行为:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('-f', '--foo-bar', '--foo')
>>> parser.add_argument('-x', '-y')
>>> parser.parse_args('-f 1 -x 2'.split())
Namespace(foo_bar='1', x='2')
>>> parser.parse_args('--foo 1 -y 2'.split())
Namespace(foo_bar='1', x='2')

dest 允许提供自定义属性名称:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', dest='bar')
>>> parser.parse_args('--foo XXX'.split())
Namespace(bar='XXX')

16.4.3.12. Action 类

Action 类实现了 Action API,它是一个返回可调用对象的可调用对象,返回的可调用对象可处理来自命令行的参数。 任何遵循此 API 的对象均可作为 action 形参传给 add_argument()

class argparse.Action(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)

Action 对象会被 ArgumentParser 用来表示解析从命令行中的一个或多个字符串中解析出单个参数所必须的信息。 Action 类必须接受两个位置参数以及传给 ArgumentParser.add_argument() 的任何关键字参数,除了 action 本身。

Action 的实例(或作为or return value of any callable to the action 形参的任何可调用对象的返回值)应当定义 “dest”, “option_strings”, “default”, “type”, “required”, “help” 等属性。 确保这些属性被定义的最容易方式是调用 Action.__init__

Action 的实例应当为可调用对象,因此所有子类都必须重载 __call__ 方法,该方法应当接受四个形参:

  • parser - 包含此动作的 ArgumentParser 对象。

  • namespace - 将由 parse_args() 返回的 Namespace 对象。 大多数动作会使用 setattr() 为此对象添加属性。

  • values - 已关联的命令行参数,并提供相应的类型转换。 类型转换由 add_argument()type 关键字参数来指定。

  • option_string - 被用来发起调用此动作的选项字符串。 option_string 参数是可选的,且此参数在动作关联到位置参数时将被略去。

__call__ 方法可以执行任意动作,但通常将基于 destvalues 来设置 namespace 的属性。

16.4.4. parse_args() 方法

ArgumentParser.parse_args(args=None, namespace=None)

将参数字符串转换为对象并将其设为命名空间的属性。 返回带有成员的命名空间。

之前对 add_argument() 的调用决定了哪些对象被创建以及它们如何被赋值。 请参阅 add_argument() 的文档了解详情。

  • args - 要解析的字符串列表。 默认情况下是从 sys.argv 获取。

  • namespace - 用于获取属性的对象。 默认值是一个新的空 Namespace 对象。

16.4.4.1. 选项值语法

parse_args() 方法支持多种指定选项值的方式(如果它接受选项的话)。 在最简单的情况下,选项和它的值是作为两个单独参数传入的:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x')
>>> parser.add_argument('--foo')
>>> parser.parse_args(['-x', 'X'])
Namespace(foo=None, x='X')
>>> parser.parse_args(['--foo', 'FOO'])
Namespace(foo='FOO', x=None)

对于长选项(名称长度超过一个字符的选项),选项和值也可以作为单个命令行参数传入,使用 = 分隔它们即可:

>>>

>>> parser.parse_args(['--foo=FOO'])
Namespace(foo='FOO', x=None)

对于短选项(长度只有一个字符的选项),选项和它的值可以拼接在一起:

>>>

>>> parser.parse_args(['-xX'])
Namespace(foo=None, x='X')

有些短选项可以使用单个 - 前缀来进行合并,如果仅有最后一个选项(或没有任何选项)需要值的话:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x', action='store_true')
>>> parser.add_argument('-y', action='store_true')
>>> parser.add_argument('-z')
>>> parser.parse_args(['-xyzZ'])
Namespace(x=True, y=True, z='Z')

16.4.4.2. 无效的参数

在解析命令行时,parse_args() 会检测多种错误,包括有歧义的选项、无效的类型、无效的选项、错误的位置参数个数等等。 当遇到这种错误时,它将退出并打印出错误文本同时附带用法消息:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--foo', type=int)
>>> parser.add_argument('bar', nargs='?')

>>> # invalid type
>>> parser.parse_args(['--foo', 'spam'])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: argument --foo: invalid int value: 'spam'

>>> # invalid option
>>> parser.parse_args(['--bar'])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: no such option: --bar

>>> # wrong number of arguments
>>> parser.parse_args(['spam', 'badger'])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: extra arguments found: badger

16.4.4.3. 包含 - 的参数

parse_args() 方法会在用户明显出错时尝试给出错误信息,但某些情况本身就存在歧义。 例如,命令行参数 -1 可能是尝试指定一个选项也可能是尝试提供一个位置参数。 parse_args() 方法在此会谨慎行事:位置参数只有在它们看起来像负数并且解析器中没有任何选项看起来像负数时才能以 - 打头。:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x')
>>> parser.add_argument('foo', nargs='?')

>>> # no negative number options, so -1 is a positional argument
>>> parser.parse_args(['-x', '-1'])
Namespace(foo=None, x='-1')

>>> # no negative number options, so -1 and -5 are positional arguments
>>> parser.parse_args(['-x', '-1', '-5'])
Namespace(foo='-5', x='-1')

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-1', dest='one')
>>> parser.add_argument('foo', nargs='?')

>>> # negative number options present, so -1 is an option
>>> parser.parse_args(['-1', 'X'])
Namespace(foo=None, one='X')

>>> # negative number options present, so -2 is an option
>>> parser.parse_args(['-2'])
usage: PROG [-h] [-1 ONE] [foo]
PROG: error: no such option: -2

>>> # negative number options present, so both -1s are options
>>> parser.parse_args(['-1', '-1'])
usage: PROG [-h] [-1 ONE] [foo]
PROG: error: argument -1: expected one argument

如果你有必须以 - 打头的位置参数并且看起来不像负数,你可以插入伪参数 '--' 以告诉 parse_args() 在那之后的内容是一个位置参数:

>>>

>>> parser.parse_args(['--', '-f'])
Namespace(foo='-f', one=None)

16.4.4.4. 参数缩写(前缀匹配)

parse_args() 方法 在默认情况下 允许将长选项缩写为前缀,如果缩写无歧义(即前缀与一个特定选项相匹配)的话:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-bacon')
>>> parser.add_argument('-badger')
>>> parser.parse_args('-bac MMM'.split())
Namespace(bacon='MMM', badger=None)
>>> parser.parse_args('-bad WOOD'.split())
Namespace(bacon=None, badger='WOOD')
>>> parser.parse_args('-ba BA'.split())
usage: PROG [-h] [-bacon BACON] [-badger BADGER]
PROG: error: ambiguous option: -ba could match -badger, -bacon

可产生一个以上选项的参数会引发错误。 此特定可通过将 allow_abbrev 设为 False 来禁用。

16.4.4.5. 在 sys.argv 以外

有时在 sys.argv 以外用 ArgumentParser 解析参数也是有用的。 这可以通过将一个字符串列表传给 parse_args() 来实现。 它适用于在交互提示符下进行检测:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(
...     'integers', metavar='int', type=int, choices=range(10),
...     nargs='+', help='an integer in the range 0..9')
>>> parser.add_argument(
...     '--sum', dest='accumulate', action='store_const', const=sum,
...     default=max, help='sum the integers (default: find the max)')
>>> parser.parse_args(['1', '2', '3', '4'])
Namespace(accumulate=<built-in function max>, integers=[1, 2, 3, 4])
>>> parser.parse_args(['1', '2', '3', '4', '--sum'])
Namespace(accumulate=<built-in function sum>, integers=[1, 2, 3, 4])

16.4.4.6. 命名空间对象

class argparse.Namespace

parse_args() 默认使用的简单类,可创建一个存放属性的对象并将其返回。

这个类被有意做得很简单,只是一个具有可读字符串表示形式的 object。 如果你更喜欢类似字典的属性视图,你可以使用标准 Python 中惯常的 vars():

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> args = parser.parse_args(['--foo', 'BAR'])
>>> vars(args)
{'foo': 'BAR'}

另一个用处是让 ArgumentParser 为一个已存在对象而不是为一个新的 Namespace 对象的属性赋值。 这可以通过指定 namespace= 关键字参数来实现:

>>>

>>> class C:
...     pass
...
>>> c = C()
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> parser.parse_args(args=['--foo', 'BAR'], namespace=c)
>>> c.foo
'BAR'

16.4.5. 其它实用工具

16.4.5.1. 子命令

ArgumentParser.add_subparsers([title][, description][, prog][, parser_class][, action][, option_string][, dest][, help][, metavar])

许多程序都会将其功能拆分为一系列子命令,例如,svn 程序包含的子命令有 svn checkout, svn updatesvn commit。 当一个程序能执行需要多组不同种类命令行参数时这种拆分功能的方式是一个非常好的主意。 ArgumentParser 通过 add_subparsers() 方法支持创建这样的子命令。 add_subparsers() 方法通常不带参数地调用并返回一个特殊的动作对象。 这种对象只有一个方法 add_parser(),它接受一个命令名称和任意多个 ArgumentParser 构造器参数,并返回一个可以通常方式进行修改的 ArgumentParser 对象。

形参的描述

  • title - 输出帮助的子解析器分组的标题;如果提供了描述则默认为 “subcommands”,否则使用位置参数的标题

  • description - 输出帮助中对子解析器的描述,默认为 None

  • prog - 将与子命令帮助一同显示的用法信息,默认为程序名称和子解析器参数之前的任何位置参数。

  • parser_class - 将被用于创建子解析器实例的类,默认为当前解析器类(例如 ArgumentParser)

  • action - 当此参数在命令行中出现时要执行动作的基本类型

  • dest - 将被用于保存子命令名称的属性名;默认为 None 即不保存任何值

  • help - 在输出帮助中的子解析器分组帮助信息,默认为 None

  • metavar - 帮助信息中表示可用子命令的字符串;默认为 None 并以 {cmd1, cmd2, ..} 的形式表示子命令

一些使用示例:

>>>

>>> # create the top-level parser
>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--foo', action='store_true', help='foo help')
>>> subparsers = parser.add_subparsers(help='sub-command help')
>>>
>>> # create the parser for the "a" command
>>> parser_a = subparsers.add_parser('a', help='a help')
>>> parser_a.add_argument('bar', type=int, help='bar help')
>>>
>>> # create the parser for the "b" command
>>> parser_b = subparsers.add_parser('b', help='b help')
>>> parser_b.add_argument('--baz', choices='XYZ', help='baz help')
>>>
>>> # parse some argument lists
>>> parser.parse_args(['a', '12'])
Namespace(bar=12, foo=False)
>>> parser.parse_args(['--foo', 'b', '--baz', 'Z'])
Namespace(baz='Z', foo=True)

请注意 parse_args() 返回的对象将只包含主解析器和由命令行所选择的子解析器的属性(而没有任何其他子解析器)。 因此在上面的例子中,当指定了 a 命令时,将只存在 foobar 属性,而当指定了 b 命令时,则只存在 foobaz 属性。

类似地,当从一个子解析器请求帮助消息时,只有该特定解析器的帮助消息会被打印出来。 帮助消息将不包括父解析器或同级解析器的消息。 (每个子解析器命令一条帮助消息,但是,也可以像上面那样通过提供 help= 参数给 add_parser() 来给出。)

>>>

>>> parser.parse_args(['--help'])
usage: PROG [-h] [--foo] {a,b} ...

positional arguments:
  {a,b}   sub-command help
    a     a help
    b     b help

optional arguments:
  -h, --help  show this help message and exit
  --foo   foo help

>>> parser.parse_args(['a', '--help'])
usage: PROG a [-h] bar

positional arguments:
  bar     bar help

optional arguments:
  -h, --help  show this help message and exit

>>> parser.parse_args(['b', '--help'])
usage: PROG b [-h] [--baz {X,Y,Z}]

optional arguments:
  -h, --help     show this help message and exit
  --baz {X,Y,Z}  baz help

add_subparsers() 方法也支持 titledescription 关键字参数。 当两者都存在时,子解析器的命令将出现在输出帮助消息中它们自己的分组内。 例如:

>>>

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers(title='subcommands',
...                                    description='valid subcommands',
...                                    help='additional help')
>>> subparsers.add_parser('foo')
>>> subparsers.add_parser('bar')
>>> parser.parse_args(['-h'])
usage:  [-h] {foo,bar} ...

optional arguments:
  -h, --help  show this help message and exit

subcommands:
  valid subcommands

  {foo,bar}   additional help

此外,add_parser 还支持附加的 aliases 参数,它允许多个字符串指向同一子解析器。 这个例子类似于 svn,将别名 co 设为 checkout 的缩写形式:

>>>

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers()
>>> checkout = subparsers.add_parser('checkout', aliases=['co'])
>>> checkout.add_argument('foo')
>>> parser.parse_args(['co', 'bar'])
Namespace(foo='bar')

一个特别有效的处理子命令的方式是将 add_subparsers() 方法与对 set_defaults() 的调用结合起来使用,这样每个子解析器就能知道应当执行哪个 Python 函数。 例如:

>>>

>>> # sub-command functions
>>> def foo(args):
...     print(args.x * args.y)
...
>>> def bar(args):
...     print('((%s))' % args.z)
...
>>> # create the top-level parser
>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers()
>>>
>>> # create the parser for the "foo" command
>>> parser_foo = subparsers.add_parser('foo')
>>> parser_foo.add_argument('-x', type=int, default=1)
>>> parser_foo.add_argument('y', type=float)
>>> parser_foo.set_defaults(func=foo)
>>>
>>> # create the parser for the "bar" command
>>> parser_bar = subparsers.add_parser('bar')
>>> parser_bar.add_argument('z')
>>> parser_bar.set_defaults(func=bar)
>>>
>>> # parse the args and call whatever function was selected
>>> args = parser.parse_args('foo 1 -x 2'.split())
>>> args.func(args)
2.0
>>>
>>> # parse the args and call whatever function was selected
>>> args = parser.parse_args('bar XYZYX'.split())
>>> args.func(args)
((XYZYX))

通过这种方式,你可以在参数解析结束后让 parse_args() 执行调用适当函数的任务。 像这样将函数关联到动作通常是你处理每个子解析器的不同动作的最简便方式。 但是,如果有必要检查被发起调用的子解析器的名称,则 add_subparsers() 调用的 dest 关键字参数将可实现:

>>>

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers(dest='subparser_name')
>>> subparser1 = subparsers.add_parser('1')
>>> subparser1.add_argument('-x')
>>> subparser2 = subparsers.add_parser('2')
>>> subparser2.add_argument('y')
>>> parser.parse_args(['2', 'frobble'])
Namespace(subparser_name='2', y='frobble')

16.4.5.2. FileType 对象

class argparse.FileType(mode='r', bufsize=-1, encoding=None, errors=None)

FileType 工厂类用于创建可作为 ArgumentParser.add_argument() 的 type 参数传入的对象。 以 FileType 对象作为其类型的参数将使用命令行参数以所请求模式、缓冲区大小、编码格式和错误处理方式打开文件(请参阅 open() 函数了解详情):

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--raw', type=argparse.FileType('wb', 0))
>>> parser.add_argument('out', type=argparse.FileType('w', encoding='UTF-8'))
>>> parser.parse_args(['--raw', 'raw.dat', 'file.txt'])
Namespace(out=<_io.TextIOWrapper name='file.txt' mode='w' encoding='UTF-8'>, raw=<_io.FileIO name='raw.dat' mode='wb'>)

FileType 对象能理解伪参数 '-' 并会自动将其转换为 sys.stdin 用于可读的 FileType 对象,或是 sys.stdout 用于可写的 FileType 对象:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('infile', type=argparse.FileType('r'))
>>> parser.parse_args(['-'])
Namespace(infile=<_io.TextIOWrapper name='<stdin>' encoding='UTF-8'>)

3.4 新版功能: encodingserrors 关键字参数。

16.4.5.3. 参数组

ArgumentParser.add_argument_group(title=None, description=None)

在默认情况下,ArgumentParser 会在显示帮助消息时将命令行参数分为“位置参数”和“可选参数”两组。 当存在比默认更好的参数分组概念时,可以使用 add_argument_group() 方法来创建适当的分组:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)
>>> group = parser.add_argument_group('group')
>>> group.add_argument('--foo', help='foo help')
>>> group.add_argument('bar', help='bar help')
>>> parser.print_help()
usage: PROG [--foo FOO] bar

group:
  bar    bar help
  --foo FOO  foo help

add_argument_group() 方法返回一个具有 add_argument() 方法的参数分组对象,这与常规的 ArgumentParser 一样。 当一个参数被加入分组时,解析器会将它视为一个正常的参数,但是会在不同的帮助消息分组中显示该参数。 add_argument_group() 方法接受 titledescription 参数,它们可被用来定制显示内容:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)
>>> group1 = parser.add_argument_group('group1', 'group1 description')
>>> group1.add_argument('foo', help='foo help')
>>> group2 = parser.add_argument_group('group2', 'group2 description')
>>> group2.add_argument('--bar', help='bar help')
>>> parser.print_help()
usage: PROG [--bar BAR] foo

group1:
  group1 description

  foo    foo help

group2:
  group2 description

  --bar BAR  bar help

请注意任意不在你的自定义分组中的参数最终都将回到通常的“位置参数”和“可选参数”分组中。

16.4.5.4. 互斥

ArgumentParser.add_mutually_exclusive_group(required=False)

创建一个互斥组。 argparse 将会确保互斥组中只有一个参数在命令行中可用:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> group = parser.add_mutually_exclusive_group()
>>> group.add_argument('--foo', action='store_true')
>>> group.add_argument('--bar', action='store_false')
>>> parser.parse_args(['--foo'])
Namespace(bar=True, foo=True)
>>> parser.parse_args(['--bar'])
Namespace(bar=False, foo=False)
>>> parser.parse_args(['--foo', '--bar'])
usage: PROG [-h] [--foo | --bar]
PROG: error: argument --bar: not allowed with argument --foo

add_mutually_exclusive_group() 方法也接受一个 required 参数,表示在互斥组中至少有一个参数是需要的:

>>>

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> group = parser.add_mutually_exclusive_group(required=True)
>>> group.add_argument('--foo', action='store_true')
>>> group.add_argument('--bar', action='store_false')
>>> parser.parse_args([])
usage: PROG [-h] (--foo | --bar)
PROG: error: one of the arguments --foo --bar is required

注意,目前互斥参数组不支持 add_argument_group()titledescription 参数。

16.4.5.5. 解析器默认值

ArgumentParser.set_defaults(**kwargs)

在大多数时候,parse_args() 所返回对象的属性将完全通过检查命令行参数和参数动作来确定。 set_defaults() 则允许加入一些无须任何命令行检查的额外属性:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('foo', type=int)
>>> parser.set_defaults(bar=42, baz='badger')
>>> parser.parse_args(['736'])
Namespace(bar=42, baz='badger', foo=736)

请注意解析器层级的默认值总是会覆盖参数层级的默认值:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default='bar')
>>> parser.set_defaults(foo='spam')
>>> parser.parse_args([])
Namespace(foo='spam')

解析器层级默认值在需要多解析器时会特别有用。 请参阅 add_subparsers() 方法了解此类型的一个示例。

ArgumentParser.get_default(dest)

获取一个命名空间属性的默认值,该值是由 add_argument()set_defaults() 设置的:

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default='badger')
>>> parser.get_default('foo')
'badger'

16.4.5.6. 打印帮助

在大多数典型应用中,parse_args() 将负责任何用法和错误消息的格式化和打印。 但是,也可使用某些其他格式化方法:

ArgumentParser.print_usage(file=None)

打印一段简短描述,说明应当如何在命令行中发起调用 ArgumentParser。 如果 fileNone,则默认使用 sys.stdout

ArgumentParser.print_help(file=None)

打印一条帮助消息,包括程序用法和通过 ArgumentParser 注册的相关参数信息。 如果 fileNone,则默认使用 sys.stdout

还存在这些方法的几个变化形式,它们只返回字符串而不打印消息:

ArgumentParser.format_usage()

返回一个包含简短描述的字符串,说明应当如何在命令行中发起调用 ArgumentParser

ArgumentParser.format_help()

反回一个包含帮助消息的字符串,包括程序用法和通过 ArgumentParser 注册的相关参数信息。

16.4.5.7. 部分解析

ArgumentParser.parse_known_args(args=None, namespace=None)

有时一个脚本可能只解析部分命令行参数,而将其余的参数继续传递给另一个脚本或程序。 在这种情况下,parse_known_args() 方法会很有用处。 它的作用方式很类似 parse_args() 但区别在于当存在额外参数时它不会产生错误。 而是会返回一个由两个条目构成的元组,其中包含带成员的命名空间和剩余参数字符串的列表。

>>>

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action='store_true')
>>> parser.add_argument('bar')
>>> parser.parse_known_args(['--foo', '--badger', 'BAR', 'spam'])
(Namespace(bar='BAR', foo=True), ['--badger', 'spam'])

警告

前缀匹配 规则应用于 parse_known_args()。 一个选项即使只是已知选项的前缀部分解析器也能识别该选项,不会将其放入剩余参数列表。

16.4.5.8. 自定义文件解析

ArgumentParser.convert_arg_line_to_args(arg_line)

从文件读取的参数(见 ArgumentParserfromfile_prefix_chars 关键字参数)将是一行读取一个参数。 convert_arg_line_to_args() 可被重载以使用更复杂的读取方式。

此方法接受从参数文件读取的字符串形式的单个参数 arg_line。 它返回从该字符串解析出的参数列表。 此方法将在每次按顺序从参数文件读取一行时被调用一次。

此方法的一个有用的重载是将每个以空格分隔的单词视为一个参数。 下面的例子演示了如何实现此重载:

class MyArgumentParser(argparse.ArgumentParser):
    def convert_arg_line_to_args(self, arg_line):
        return arg_line.split()

16.4.5.9. 退出方法

ArgumentParser.exit(status=0, message=None)

此方法将终结程序,附带指定的 status 退出,并且如果给出了 message 则会在退出前将其打印输出。

ArgumentParser.error(message)

此方法将向标准错误打印包括 message 的用法消息并附带状态码 2 终结程序。

16.4.6. 升级 optparse 代码

起初,argparse 曾经尝试通过 optparse 来维持兼容性。 但是,optparse 很难透明地扩展,特别是那些为支持新的 nargs= 描述方式和更好的用法消息所需的修改。当When most everything in optparse 中几乎所有内容都已被复制粘贴或打上补丁时,维持向下兼容看来已是不切实际的。

argparse 模块在许多方面对标准库的 optparse 模块进行了增强,包括:

  • 处理位置参数。

  • 支持子命令。

  • 允许替代选项前缀例如 +/

  • 处理零个或多个以及一个或多个风格的参数。

  • 生成更具信息量的用法消息。

  • 提供用于定制 typeaction 的更为简单的接口。

optparseargparse 的部分升级路径:

  • 将所有 optparse.OptionParser.add_option() 调用替换为 ArgumentParser.add_argument() 调用。

  • (options, args) = parser.parse_args() 替换为 args = parser.parse_args() 并为位置参数添加额外的 ArgumentParser.add_argument() 调用。 请注意之前所谓的 optionsargparse 上下文中被称为 args

  • Replace optparse.OptionParser.disable_interspersed_args() by setting nargs of a positional argument to argparse.REMAINDER, or use parse_known_args() to collect unparsed argument strings in a separate list.

  • 将回调动作和 callback_* 关键字参数替换为 typeaction 参数。

  • type 关键字参数字符串名称替换为相应的类型对象(例如 int, float, complex 等)。

  • optparse.Values 替换为 Namespace 并将 optparse.OptionErroroptparse.OptionValueError 替换为 ArgumentError

  • 将隐式参数字符串例如使用标准 Python 字典语法的 %default%prog 替换为格式字符串,即 %(default)s%(prog)s

  • 将 OptionParser 构造器 version 参数替换为对 parser.add_argument('--version', action='version', version='<the version>') 的调用。

测试的主要评测方法 简介   测试的主要评测方法包括覆盖和质量。   测试覆盖是对测试完全程度的评测,它建立在测试覆盖基础上,测试覆盖是由测试需求和测试用例的覆盖或已执行代码的覆盖表示的。   质量是对测试对象(系统或测试的应用程序)的可靠性、稳定性以及性能的评测。质量建立在对测试结果的评估和对测试过程中确定的变更请求(缺陷)的分析的基础上。 覆盖评测   覆盖指标提供了"测试的完全程度如何?"这一问题的答案。最常用的覆盖评测是基于需求的测试覆盖和基于代码的测试覆盖。简而言之,测试覆盖是就需求(基于需求的)或代码的设计/实施标准(基于代码的)而言的完全程度的任意评测,如用例的核实(基于需求的)或所有代码行的执行(基于代码的)。   系统的测试活动建立在至少一个测试覆盖策略基础上。覆盖策略陈述测试的一般目的,指导测试用例的设计。覆盖策略的陈述可以简单到只说明核实所有性能。   如果需求已经完全分类,则基于需求的覆盖策略可能足以生成测试完全程度的可计量评测。例如,如果已经确定了所有性能测试需求,则可以引用测试结果来得到评测,如已经核实了 75% 的性能测试需求。   如果应用基于代码的覆盖,则测试策略是根据测试已经执行的源代码的多少来表示的。这种测试覆盖策略类型对于安全至上的系统来说非常重要。   两种评测都可以手工得到(公式如下所示)或通过测试自动化工具计算得到。 基于需求的测试覆盖   基于需求的测试覆盖在测试生命周期中要评测多次,并在测试生命周期的里程碑处提供测试覆盖的标识(如已计划的、已实施的、已执行的和成功的测试覆盖)。   在执行测试活动中,使用两个测试覆盖评测,一个确定通过执行测试获得的测试覆盖,另一个确定成功的测试覆盖(即执行时未出现失败的测试,如没有出现缺陷或意外结果的测试)。   这些覆盖评测通过以下公式计算:   这一关于测试覆盖的陈述是有意义的,可以将其与已定义的成功标准进行对比。如果不符合该标准,则此陈述将成为预测剩余测试工作量的基础。 基于代码的测试覆盖   基于代码的测试覆盖评测测试过程中已经执行的代码的多少,与之相对的是要执行的剩余代码的多少。代码覆盖可以建立在控制流(语句、分支或路径)或数据流的基础上。控制流覆盖的目的是测试代码行、分支条件、代码中的路径或软件控制流的其他元素。数据流覆盖的目的是通过软件操作测试数据状态是否有效,例如,数据元素在使用之前是否已作定义。   基于代码的测试覆盖通过以下公式计算: 质量评测   测试覆盖的评估提供对测试完全程度的评测,在测试过程中已发现缺陷的评估提供了最佳的软件质量指标。因为质量是软件与需求相符程度的指标,所以在这种环境中,缺陷被标识为一种更改请求,该更改请求中的测试对象与需求不符。   缺陷评估可能建立在各种方法上,这些方法种类繁多,从简单的缺陷计数到严格的统计建模不一而足。   严格的评估假定测试过程中缺陷达到的比率或发现的比率。常用模型假定该比率符合泊松分布。则有关缺陷率的实际数据可以适用于这一模型。生成的评估将评估当前软件的可靠性,并且预测继续测试并排除缺陷时可靠性如何增长。该评估被描述为软件可靠性增长建模,这是一个活跃的研究领域。由于该类型的评估缺乏工具支持,所以应该慎重平衡成本与其增加价值。   缺陷分析就是分析缺陷在与缺陷关联关系的一个或多个参数值上的分布。缺陷分析提供了一个软件可靠性指标。   对于缺陷分析,常用的主要缺陷参数有四个:   • 状态:缺陷的当前状态(打开的、正在修复或关闭的等)。   • 优先级:必须处理和解决缺陷的相对重要性。   • 严重性:缺陷的相关影响。对最终用户、组织或第三方的影响等等。   • 起源:导致缺陷的起源故障及其位置,或排除该缺陷需要修复的构件。   可以将缺陷计数作为时间的函数来报告,即创建缺陷趋势图或报告;也可以将缺陷计数作为一个或多个缺陷参数的函数来报告,如作为缺陷密度报告中采用的严重性或状态参数的函数。这些分析类型分别为揭示软件可靠性的缺陷趋势或缺陷分布提供了判断依据。   例如,预期缺陷发现率将随着测试进度和修复进度而最终减少。可以设定一个阈值,在缺陷发现率低于该阈值时才能部署软件。也可根据执行模型中的起源报告缺陷计数,以允许检测"较差的模块"、"热点"或需要再三修复的软件部分,从而指示一些更基本的设计缺陷。   这种分析中包含的缺陷必须是已确认的缺陷。不是所有已报告的缺陷都报告实际的缺陷,这是因为某些缺陷可能是扩展请求,超出了项目的规模,或描述的是已报告的缺陷。然而,需要查看并分析一下,为什么许多报告的缺陷不是重复的缺陷就是未经确认的缺陷,这样做是有价值的。 缺陷报告   Rational Unified Process 以三类形式的报告提供缺陷评估:   • 缺陷分布(密度)报告允许将缺陷计数作为一个或多个缺陷参数的函数来显示。   • 缺陷龄期报告是一种特殊类型的缺陷分布报告。 缺陷龄期报告显示缺陷处于特定状态下的时间长短,如"提出的"。在龄期类别中,缺陷还可以按其他属性分类,如"拥有者"。   • 缺陷趋势报告按状态(新的、已打开的或关闭的)将缺陷计数作为时间的函数显示。趋势报告可以是累计的,也可以是非累计的。   • 测试结果和进度报告显示对测试的应用程序进行若干次迭代和测试生命周期后的测试过程执行结果。 许多此类报告对于评估软件质量具有很高的价值。一般测试标准中包括有关特定类别(如严重性级别)中打开的缺陷数的陈述。通过缺陷分布评估可以轻松地核对该标准。对测试需求进行过滤或分类,该评估可以侧重于不同的需求集。   要有效生成此类报告,一般需要工具支持。 缺陷密度报告 缺陷状态与优先级   应该给定所有缺陷的优先级,通常可行的做法是设定四种优先级中的一种:   1. 立即解决   2. 高优先级   3. 正常排队   4. 低优先级   一个成功测试的标准可以表示为缺陷在上述优先级上所应体现的分布方式。例如,对于一个成功的测试标准来说,可能不存在优先级为 1 的打开的缺陷,而且优先级为 2 的打开的缺陷要少于 5 个。例如下面的缺陷分布图:   很明显该图显示的情况没有达到标准。请注意,该图需要通过过滤器才能只显示需要的打开的缺陷。 缺陷状态与严重性   缺陷严重性报告显示每种严重性级别的缺陷个数,例如致命错误、未执行主要功能、次要错误等严重性级别。 缺陷状态与在实施模型中的位置   缺陷起源报告显示缺陷在实施模型元素上的分布情况。 缺陷龄期报告   缺陷龄期分析提供了有关测试有效性和缺陷排除活动的良好反馈。例如,如果大部分龄期较长的、未解决的缺陷处于有待确认的状态,则可能表明没有充足的资源应用于再次测试工作。 缺陷趋势报告   趋势报告确定缺陷率并提供了一个出色的测试状态视图。在测试生命周期中,缺陷趋势遵循着一种比较好预测的模式。在生命周期的初期,缺陷率增长很快。在达到顶峰后,就随时间以较慢的速率下降。   要发现问题,可以根据这一趋势复审项目时间表。例如,在四个星期的生命周期中,如果缺陷率在第三个星期中仍然增长,则项目很明显没有按时间表进行。   这一简单的趋势分析假定:缺陷是立即关闭的,且在随后的工作版本中对修复进行测试,这样关闭缺陷的速率应该遵循与打开缺陷的速率相同的增减趋势。如果情况并非如此,则表明缺陷解决流程发生了问题;缺陷修复所需的资源或再次测试和确认修复所需的资源可能不足。   该报告反映的趋势显示,在项目开始时,发现和打开新缺陷的速率很快,但随着时间推移,该速率不断降低。打开的缺陷的趋势与新缺陷的趋势相似,但稍微滞后一些。关闭的缺陷的趋势随着打开的缺陷的修复和核实而不断增长。这些趋势描述的是成功的工作。   如果您的趋势与这些趋势差别显著,则表明存在问题,并可以确定可能需要附加资源以应用于开发或测试特定区域的时间。   当与测试覆盖评测结合起来时,缺陷分析可提供出色的评估,测试完成的标准也可以建立在此评估基础上。 性能评测   评估测试对象的性能行为时,可以使用多种评测,这些评测侧重于获取与行为相关的数据,如响应时间、计时配置文件、执行流、操作可靠性和限制。这些评测主要在评估测试活动中进行评估,但是也可以在执行测试活动中使用性能评测评估测试进度和状态。 主要的性能评测包括:   • 动态监测 - 在测试执行过程中,实时获取并显示正在执行的各测试脚本的状态。   • 响应时间/吞吐量 - 测试对象针对特定主角和/或用例的响应时间或吞吐量的评测。   • 百分位报告 - 数据已收集值的百分位评测/计算。   • 比较报告 - 代表不同测试执行情况的两个(或多个)数据集之间的差异或趋势。   • 追踪报告 -主角(测试脚本)和测试对象之间的消息/会话详细信息。 软件作为一种纯数字化商品,在没有权威的第三方进行监督认证的情况下,软件供应商和用户在软件产品是否达到目标需求的问题上,往往各执一词。   关于软件质量标准和认证,国内虽然制定了有限的几个软件技术标准,但无法从根本上对软件这种特殊商品实施有效的质量监督和认证。在国际上通行的做法是,软件的质量标准和认证工作,由独立的软件测试机构来完成。这些测试机构的行为是市场化的,但因为测试能力和权威性将直接关系到它们的市场影响力,所以他们的测试行为极其严格,力求将垃圾软件扼杀在摇篮中。   樱花西街一座不太显眼的大厦里,迈捷实验室技术总监武友文从软件测试说起,以第三方的视角分析了制约国内软件发展的瓶颈,发表了不同意见,提出了自己的建议。 为什么需要软件测试   “我是清华大学77级的学生,在国内做了3年软件开发,随后就去了加拿大读研,专业是网络协议测试。毕业后我在北电、惠普等公司做软件质量的控制和测试项目。”武友文轻声细语地说着自己的经历,“1998年我回到国内,在对金融和电信行业进行考察时,发现他们买的硬件设备都是顶级的,可惜软件应用这一块跟不上,导致了硬件功能得不到充分的发挥。硬件设备低下的运行效率,造成了资源与资金的隐性浪费。不客气地说,实际上,是国内软件在拖硬件的后腿。”   在武友文回国期间,国内一些软件开发商通过朋友的引见,邀请武友文与公司研发人员交流时,武友文发现当时国内的软件开发普遍存在“重开发,轻测试”的现象,常常是在项目开发完成之后,才发现软件有严重缺陷问题,不得不全部推倒从头再来。推倒重来则意味着前期人、财、物的投入全部浪费了,即大大增加了软件的开发成本,又会因为超出了客户的委托时间,付出的代价就更高了。   武友文以自己在国际公司的实践经验,一再强调,软件测试是软件开发过程中的一个重要步骤,或者说测试应该贯穿在软件开发过程的每一个阶段。软件测试所起到的作用就是:能够确保在软件开发的过程中,随时发现问题,方便开发人员及时修改。   在国内对于消费类软件来说,经常出现一些已经推向市场的产品由于被发现有严重缺陷而导致大量退货的局面。而对于定制的行业软件来说,则是一再的返工、绵绵无绝期的修改和维护,既拖死了软件提供商,也耽误了客户的正常业务。   这一系列现状使用户对国内软件提供商失去信心,因此我们经常听到有人抱怨:国内软件没法用,对于正在成长的国内软件市场来说,这一结论无疑是灭顶之灾。   武友文告诉记者:“因为国外软件的成熟度高,开发商对软件质量的控制力度很强,所以国外软件测试外包的不是太多;不过在国外有些软件需要比较专业的质量认证,例如软件的本地化测试,就必须借助第三方机构来完成了。拿微软来说吧,微软的产品要翻译成欧洲的6种文字,如果是自己来做这些本地化测试工作,成本就会很大,所以外包给别的公司来做就很合适;另外还有一种情况也会外包的,例如对一些大型软件的测试,不一定每家开发商都有专业的测试队伍和测试的工具。从成本上来说,某些软件测试工作外包是经济的。相反,国内软件的成熟度比较低,软件开发商基本没有能力来做测试,我指的是专业的、职业的测试,所以从目前来说,国内软件测试的市场空间很大。”   凭着对软件测试行业的深刻理解,武友文意识到要解决国内软件应用滞后于硬件的问题,就必须提高国内软件的质量,而要提高软件质量,就必须加强软件开发过程中的测试力量,而独立的第三方测试机构正是一个市场空白点,于是专业从事软件测试的迈捷实验室就应运而生。 软件测试如何做   “迈捷成立之初,主营业务只是受客户委托,测试已经开发完毕的软件,更多的是事后验收工作,后来我们慢慢的从事后测试,向质量控制上转型,例如开始介入软件开发前的需求评审,以及开发时的文档评审、代码走查等等。我们最终的发展方向就是做软件监理,但是不能不承认,目前我们与国际上通行的软件监理还有一定的距离。”说到迈捷的发展方向,武友文沉稳中略显激昂。   武友文接着说:“美国实际是在软件规模的扩大和结构的不断复杂的情况下,开始建立软件测试制度和规矩的。我想美国在软件开发的起步阶段,也不会自己主动去做,是在现实的压力下,才去实施这些流程规范的。国内一定要有这种意识,意识到软件开发过程中一定要引进这些规章制度。另外,意识到了还不行,一定要实践。 软件测试现状   武友文向记者提供的一个市场调查报告说明,目前国内做软件测试的机构,还没有发现与迈捷公司商业形态相同的企业,只是有某些政府部门下属的机构做一些软件产品验收工作,但完全商业化操作的机构没有;另外就是开发商临时承接的一些软件测试项目。当记者问到迈捷实施软件测试时遇到的最大障碍是什么时,武友文很爽快的回答到: “一是客户的意识,二是我们派出的项目实施人员的素质问题。”   实施软件评测项目时,客户要有接受管理软件开发流程的意识。   客户交给开发商一个项目,通过测试等质量掌控流程,可以将产品的质量保证在一个相对较高的水准,减少后续工作的成本。但是现在很多开发商和客户很短视,觉得只要现在没有出问题,就可以了,不愿意在软件开发过程中,让测试介入的程度不深,这导致测试不完全,埋下了隐患。   无论是对软件开发商还是对客户来说,忽视软件测试,必将导致上的软件开发项目越多,将来会被这些有问题的项目给拖死的概率越高。   武友文说:“有独立的软件测试第三方的出现,好处就是严格地掌控软件质量,减少维护成本,这不光对客户有好处,对开发商也有好处。所以一个项目,在我们实施很长一段时间,大约是半年至两年后,客户才意识到这样做是有用的。这很正常,因为软件开发一定会有大大小小的问题,包括我们评测也有一些问题查不出来。”   迈捷对派出的项目实施人员的标准很高,要求既有综合素质,又要有专业素质,目前国内这种复合型的人才太少了,于是迈捷只能自己培养。   而人才培训,则令武友文最为头痛。人才培养是迈捷在资金和力量上投入最大的一块。其中专业素质的培训最难,因为需要实践。这如同医生一样,从医学校毕业了,虽然有很多理论上的积累,但是缺乏临床经验,你还不是一个合格的医生,更别谈做一个好医生了。项目实施管理者也一样,既要有理论基础,更要有经验积累,而一个优秀的项目实施管理者重要的素质是,能在按流程做的基础上,发挥个人的主观能动性,这个要求就太高了,但这又是项目实施成否的关键。   国内软件业和国外相比,最大的差异就在:质量和质量控制应该是最重要的一项内容。但是,无论在消费类软件还是大型软件的测试领域,与国外相比,国内软件产品的质量掌控体系和标准都是模糊的。国内软件提供商的质量承诺,既没有相应机构的监督,质量水平也没有第三方来认证,承诺显得极其苍白而无力。   可喜的是,软件测试机构在我国正逐渐成长起来,并且,它们在软件市场上的影响力正逐步得到提升。因缺乏游戏规则导致整个软件行业的市场行为不规范,并且严重制约软件行业健康成长的局面,一定会有所改善。 采访后记:   软件评测只是用技术手段来监控软件产品的质量,并不能从根本上提高我国软件产品的水平。目前,国内最缺的是软件项目实施的高级管理人才和软件结构分析的专业人才。这种高级人才的培育制度才是最重要的,缺乏高级人才培养的后果,会影响国内软件的进程。与培养软件蓝领相比,虽然高级人才培育的时间周期长,资金投入大,但是我们一定不能急功近利,要有这种忧患意识,去做这项有长远影响的工作。这种工作不是非得要谁去做,但是我们一定要有这种意识去投入去做。   在采访中,武友文认为大量的蓝领、很少的白领,这样的软件产业肯定有问题。不少人对将软件分为对白领蓝领很有意见,软件开发流程应该有一定的延续性。因为写程序不难,谁都能写,难的是写出合格的、优秀的程序。单一的写程序对软件开发很不合适,如果你不懂别的,譬如软件架构和质量目标,那么程序也写不好。单从编程的角度进行培训,对蓝领见效快,对白领则不太公平。   日本在软件开发中分得很细,国内接日本软件外包的业务很多,但大部分只是负责一个模块。软件是个创造性的工作,变成流水线工业化生产也许有问题。在我们的软件开发中,往往技术是不成问题的,但是管理是个大问题。我们的软件企业中,各个员工意识不一样,在不同的阶段理解不一样,管理人员的素质也不一样。软件管理和测试是一个需要反复实践的过程,要通过反复的实践才能解决问题。这些问题根本不是培训大量的软件蓝领就能解决的。   现在关于软件工程的培训很多,如果只是讲课意义不大,这些课在学校都已经讲过了,现在要的是实践。但是,目前国内还很欠缺这种实践的机会。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值