HDU1385Minimum Transport Cost(Flody+bfs路径输出)

本文深入探讨了在无向图中寻找特定起点到终点的最短距离及字典序最小路径的方法,通过Floyd算法结合BFS进行路径输出,提供了一个高效解决此类问题的参考代码。

题目来源:
http://acm.hdu.edu.cn/showproblem.php?pid=1385

Problem Description

These are N cities in Spring country. Between each pair of cities there may be one transportation track or none. Now there is some cargo that should be delivered from one city to another. The transportation fee consists of two parts: 
The cost of the transportation on the path between these cities, and

a certain tax which will be charged whenever any cargo passing through one city, except for the source and the destination cities.

You must write a program to find the route which has the minimum cost.

Input

First is N, number of cities. N = 0 indicates the end of input.

The data of path cost, city tax, source and destination cities are given in the input, which is of the form:

a11 a12 ... a1N
a21 a22 ... a2N
...............
aN1 aN2 ... aNN
b1 b2 ... bN

c d
e f
...
g h
where aij is the transport cost from city i to city j, aij = -1 indicates there is no direct path between city i and city j. bi represents the tax of passing through city i. And the cargo is to be delivered from city c to city d, city e to city f, ..., and g = h = -1. You must output the sequence of cities passed by and the total cost which is of the form:

Output

From c to d :
Path: c-->c1-->......-->ck-->d
Total cost : ......
......

From e to f :
Path: e-->e1-->..........-->ek-->f
Total cost : ......

Note: if there are more minimal paths, output the lexically smallest one. Print a blank line after each test case.

Sample Input

5
0 3 22 -1 4
3 0 5 -1 -1
22 5 0 9 20
-1 -1 9 0 4
4 -1 20 4 0
5 17 8 3 1
1 3
3 5
2 4
-1 -1
0

Sample Output

From 1 to 3 :
Path: 1-->5-->4-->3
Total cost : 21

From 3 to 5 :
Path: 3-->4-->5
Total cost : 16

From 2 to 4 :
Path: 2-->1-->5-->4
Total cost : 17

From 1 to 3 : Path: 1-->5-->4-->3 Total cost : 21 From 3 to 5 : Path: 3-->4-->5 Total cost : 16 From 2 to 4 : Path: 2-->1-->5-->4 Total cost : 17

题意:

    给你一个无向图,现在要你输出特定起点到终点的最短距离以及字典序最小的路径.

思路:

Floyd+bfs路径输出

参考代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdio>
#define inf 0x3f3f3f3f
#define N 1010
using namespace std;
int n,cost[N],dist[N][N],path[N][N];//dist[i][j]表示i到j的最短距离,path[i][j]保存了从i到j路径的第一个点(除i以外)
void Floyd()
{
    for(int i=1; i<=n; i++)
        for(int j=1; j<=n; j++)
            path[i][j]=j;
    for(int k=1; k<=n; k++)
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                if(dist[i][k]<inf && dist[k][j]<inf)
                {
                    if(dist[i][j] > dist[i][k]+dist[k][j]+cost[k])
                    {
                        dist[i][j] = dist[i][k]+dist[k][j]+cost[k];
                        path[i][j] = path[i][k];
                    }
                    else if(dist[i][j] == dist[i][k]+dist[k][j]+cost[k] && path[i][j]>path[i][k])
                    {
                        path[i][j]=path[i][k];
                    }
                }
}
void bfs(int u,int v)
{
    printf("From %d to %d :\n",u,v);
    if(u!=v)
    {
        printf("Path: %d",u);
        int now = path[u][v];
        while(1)
        {
            printf("-->%d",now);
            if(now==v)
            {
                printf("\n");
                break;
            }
            now = path[now][v];
        }
    }
    else//注意U==V的特殊情况
    {
        printf("Path: %d\n",u);
    }
    printf("Total cost : %d\n\n",dist[u][v]);
}
int main()
{
    while(~scanf("%d",&n))
    {
        if(!n)break;
        memset(dist,0,sizeof(dist));
		memset(path,0,sizeof(path));
		memset(cost,0,sizeof(cost));
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
            {
                scanf("%d",&dist[i][j]);
                if(dist[i][j]==-1) dist[i][j]=inf;
            }
        for(int i=1; i<=n; i++)
            scanf("%d",&cost[i]);
        Floyd();
        while(1)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            if(u==-1&&v==-1)
            {
                break;
            }
            bfs(u,v);
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nuoyanli

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值