mahout分类源码分析
接口Interface OnlineLearner:
实现的类:
AbstractOnlineLogisticRe
方法如下:
void train(int actual,
更新模型,实用一个目标变量的值和一个特征向量,主意这里假定:如果对训练数据进行多次,那么训练样本应该有相同的顺序。
参数说明:
actual:目标变量的值,这个值应该是一个半开区间[0....n)其中n是目标变来那个的类别。
instance:特征向量
void train(long trackingKey,
更新模型,实用一个目标变量的值和一个特征向量
Parameters:
trackingKey - The tracking key for this training example.
groupKey - An optional value that allows examples to be grouped in
the computation of the update to the model.
actual - The value of the target variable. This value should be in
the half-open interval [0..n) where n is the number of target
categories.
instance - The feature vector for this example.
void train(long trackingKey,
Updates the model using a particular target variable value and a
feature vector.
Parameters:
trackingKey - The tracking key for this training example.
actual - The value of the target variable. This value should be in
the half-open interval [0..n) where n is the number of target
categories.
instance - The feature vector for this example.
void close()
为分类做准备,去掉任何临时数据结构,一个在线分类器应该能接受更多的训练在调用clouse(),但是关闭分类器或许使分类更有效。
本文介绍了Mahout中在线学习器InterfaceOnlineLearner的相关实现类及其方法,包括AbstractOnlineLogisticRegression、AdaptiveLogisticRegression等,并详细解释了如何通过特定的目标变量值和特征向量来更新模型。
4680

被折叠的 条评论
为什么被折叠?



