数的机器表示的学习体会

四字长补码表示法

       小弟自从学习数的机器表示后,对补码尤为不解。今天重新看了一下以前教材,略有体会,故分享之,愿能帮助同样迷茫的朋友。

  废话少说。直入正题。

  我们知道计算机的有符号数有三种表示法——原码、反码、补码。这里着重讲补码(只讨论整数)

问:四字长表示的机器数补码能表示-8,而原码、反码却不行?

      :由于公式编辑不了(或者我不会吧),整数原码、反码、补码的定义请自行参照。

     -8,真值为-1000, 参照定义,原码和反码均无表示,为什么没有呢?我们看看原码和补码0的表示吧,参照定义

    原码:[+0]=0000;[-0]=1000,四位数最多表示16个编码,而0占两个,试问-8如何表示,至于正负0为什么要出现,哥也不知Orz。反码也是类似。不赘述。看补码则不然,0只有     0000。

    明白了吧,正是由于补码刚好还有一个编码剩余,-8可以表示出来。

问:不是说取反加一得补码吗?为什么-8取反加1不是1000???

            首先,取反加1的数是必须先用原码表示,-8没有原码(四字长表示时),哪来的取反加一(不要乱套!!!要理解记忆),根据定义[-8]补=2^4-1000=1000

          就说这么一点吧,如有错漏,请指正!!!


基于据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参设置对聚类效果的影响,并尝试将其应用于其他相似的据聚类问题中,以加深理解和拓展应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值