(二)随机变量的数字特征:探索概率分布的关键指标

🍋1. 随机变量的数学期望

🍋1.1 离散型随机变量的数学期望

  • 0-1分布

0-1分布是一种二值分布,表示事件发生与否的概率,通常用p表示成功的概率,1-p表示失败的概率。其数学期望为E(X) = p

  • 二项分布

二项分布描述了n次独立重复的二值试验,其中每次试验成功的概率为p。其数学期望为E(X) = np

  • 泊松分布

泊松分布适用于描述单位时间或空间内随机事件发生的次数,如电话呼叫、到达客户等。其数学期望为E(X) = λ,其中λ表示单位时间或空间内平均发生的次数。

  • 几何分布

几何分布用于描述在n次独立重复的伯努利试验中首次成功发生的次数。其数学期望为E(X) = 1/p,其中p表示每次试验成功的概率。

🍋1.2 连续型随机变量的数学期望

  • 均匀分布

均匀分布在区间[a, b]内等可能地取任何值。其数学期望为E(X) = (a + b) / 2

  • 指数分布

指数分布描述了连续事件发生的时间间隔,其数学期望为E(X) = 1/λ,其中λ为事件发生率。

  • 正态分布

正态分布是自然界中最常见的分布之一,其数学期望为E(X) = μ,其中μ为均值。

🍋2. 随机变量函数的数学期望

🍋2.1 一维随机变量函数的数学期望

假设我们有一个一维随机变量 X,以及一个实值函数 g(X)。一维随机变量函数 g(X) 的数学期望,通常表示为 E[g(X)],是对该函数在随机变量 X 上的期望值。具体计算方法如下:

对于离散型随机变量 XX,数学期望 E[g(X)]E[g(X)] 的计算方法为:
E[g(X)]=x∑​g(x)P(X=x)

其中,∑x表示对所有可能的取值 x 求和,P(X=x) 是 X 等于 x 的概率质量函数。

对于连续型随机变量 X,数学期望 E[g(X)] 的计算方法为:
E[g(X)]=∫g(x)f(x)dx

其中,∫ 表示对所有可能的取值 x 进行积分,f(x) 是 X 的概率密度函数。

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小馒头学python

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值