前言
随着人工智能技术的飞速发展,语义表征和检索增强生成(Retrieval Augmented Generation, RAG)在各个领域的应用日益广泛。在这样的背景下,网易有道推出了划时代的BCEmbedding模型,这不仅是一次技术的革新,更是跨语种检索和RAG领域的一次重大突破。
-
Huggingface模型下载:https://huggingface.co/maidalun1020/bce-embedding-base_v1
-
AI快站模型免费加速下载:https://aifasthub.com/models/maidalun1020
主要特点
-
双语和跨语种能力:基于有道翻译引擎的强大能力,
BCEmbedding
实现强大的中英双语和跨语种语义表征能力。 -
RAG适配:面向RAG做针对性优化,可适配大多数相关任务,比如翻译,摘要,问答等。此外,针对 问题理解(query understanding) 也做了针对优化。
-
高效且精确的语义检索:
EmbeddingModel
采用双编码器,可以在第一阶段实现高效的语义检索。RerankerModel
采用交叉编码器,可以在第二阶段实现更高精度的语义顺序