A - 棋盘问题
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
代码:
#include<iostream>
#include<cstdio>
#include<string>
using namespace std;
char a[10][10];
bool b[10];//用来标记已经放棋子的行
int n,k,ans;
//选什么做参数很重要
void dfs(int r,int k)//r是行
{
if(k==0)
{
ans++;//方案数
return;
}
for(int i=r;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(a[i][j]=='.'||b[j]==true)//不是棋盘的跳,已经放过的跳
continue;
b[j]=true;
dfs(i+1,k-1);
b[j]=false;
}
}
return;
}
int main(void)
{
while(~scanf("%d %d",&n,&k))
{
if(n==-1&&k==-1)
break;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf(" %c",&a[i][j]);//空格
for(int i=0;i<10;i++)
b[i]=false;
ans=0;
dfs(0,k);
printf("%d\n",ans);
}
return 0;
}
更详细请看他的
点击打开链接