pytorch 网络可视化——torchsummary

1,pytorch 网络可视化——torchsummary

参考:参考1

示例:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models

# 定义图像处理的ResNet模型


class ImageNet(nn.Module):
    def __init__(self):
        super(ImageNet, self).__init__()
        # self.resnet = models.resnet18(pretrained=True)
        self.conv1 = nn.Conv2d(128, 64, kernel_size=3, stride=2)
        self.conv2 = nn.Conv2d(64, 32, kernel_size=3, stride=2)
        self.conv3 = nn.Conv2d(32, 16, kernel_size=3, stride=2)
        self.maxpool = nn.MaxPool2d(2,stride=2)
        self.fc1 = nn.Linear(16*7*7,256)
        # self.fc2 = nn.Linear()
        # for param in self.resnet.parameters():
        #     param.requires_grad = False
        # self.resnet.fc = nn.Linear(self.resnet.fc.in_features, 256)

    def forward(self, x):
        # x = self.resnet(x)
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = F.relu(self.conv3(x))
        x = F.relu(self.maxpool(x))
        x = x.contiguous().view(-1, 16*7*7)   
        x = self.fc1(x)
        # x = self.fc2(x)
        # x = self.fc(x)
        return x
   
import torch.nn as nn
from torchsummary import summary

net = ImageNet()

#输出每层网络参数信息
summary(net, input_size=[(128, 128, 128), (1,)],batch_size=1,device="cpu")     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值