jdk源码分析 – Thread线程类源码分析

本文详细解析了Java中线程的创建方式,包括Thread类的继承关系、构造函数及start和run方法的具体实现过程。此外,还介绍了如何通过Runnable接口实现多线程,并解释了这种实现方式的工作原理。
1、继承关系:

首先看到Thread类的声明:

class Thread implements Runnable {
    /* Make sure registerNatives is the first thing <clinit> does. */

可知,其实现了Runnable接口,而Runnable接口有一个run()方法,所以Thread也实现了该方法。

2、构造函数:

找到其无参构造函数:

public Thread() {
    init(null, null, "Thread-" + nextThreadNum(), 0);
    }

这里的第三个参数是设置线程的名称,从下面的代码中可以看出,生成名称的规则是:”Thread-”加上创建的线程的个数(第几个)。

    /* For autonumbering anonymous threads. */
    private static int threadInitNumber;
    private static synchronized int nextThreadNum() {
	return threadInitNumber++;
    }

可以看到threadInitNumber是类静态变量。且他的增加是线程安全的。(synchronized )

继续查看init方法:

private void init(ThreadGroup g, Runnable target, String name,
                      long stackSize) {
    Thread parent = currentThread();
    SecurityManager security = System.getSecurityManager();
    if (g == null) {
        /* Determine if it's an applet or not */

        /* If there is a security manager, ask the security manager
           what to do. */
        if (security != null) {
        g = security.getThreadGroup();
        }

        /* If the security doesn't have a strong opinion of the matter
           use the parent thread group. */
        if (g == null) {
        g = parent.getThreadGroup();
        }
    }
    /* checkAccess regardless of whether or not threadgroup is
           explicitly passed in. */
    g.checkAccess();

    /*
     * Do we have the required permissions?
     */
    if (security != null) {
        if (isCCLOverridden(getClass())) {
            security.checkPermission(SUBCLASS_IMPLEMENTATION_PERMISSION);
        }
    }

        g.addUnstarted();

    this.group = g;
    this.daemon = parent.isDaemon();
    this.priority = parent.getPriority();
    this.name = name.toCharArray();
    if (security == null || isCCLOverridden(parent.getClass()))
        this.contextClassLoader = parent.getContextClassLoader();
    else
        this.contextClassLoader = parent.contextClassLoader;
    this.inheritedAccessControlContext = AccessController.getContext();
    this.target = target;
    setPriority(priority);
        if (parent.inheritableThreadLocals != null)
        this.inheritableThreadLocals =
        ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
        /* Stash the specified stack size in case the VM cares */
        this.stackSize = stackSize;

        /* Set thread ID */
        tid = nextThreadID();

        this.me = this;
    }

初始化时设置了是否为守护线程,优先级,初始化名称。

3、Thread的start方法的实现:
public synchronized void start() {
        /**
     * This method is not invoked for the main method thread or "system"
     * group threads created/set up by the VM. Any new functionality added 
     * to this method in the future may have to also be added to the VM.
     *
     * A zero status value corresponds to state "NEW".
         */
        if (threadStatus != 0 || this != me)
            throw new IllegalThreadStateException();
        group.add(this);
        start0();
        if (stopBeforeStart) {
        stop0(throwableFromStop);
    }
    }

这里主要的是start0方法;查看其实现:

private native void start0();

这里使用了本地调用,通过C代码初始化线程需要的系统资源。并同时调用run()方法。

可见,线程底层的实现是通过C代码去完成的。

4、Thead的run方法的实现:
public void run() {
    if (target != null) {
        target.run();
    }
    }

这里的target实际上要保存的是一个Runnable接口的实现的引用:

private Runnable target;

所以使用继承Thread创建线程类时,需要重写run方法,因为默认的run方法什么也不干。

而当我们使用Runnable接口实现线程类时,为了启动线程,需要先勇该线程类实例初始化一个Thread,实际上就执行了如下构造函数:

public Thread(Runnable target) {
    init(null, target, "Thread-" + nextThreadNum(), 0);
    }

即是把线程类的引用保存到target中。这样,当调用Thread的run方法时,target就不为空了,而是继续调用了target的run方法,所以我们需要实现Runnable的run方法。这样通过Thread的run方法就调用到了Runnable实现类中的run方法。

这也是Runnable接口实现的线程类需要这样启动的原因。

可见Thread类也是一个代理类。(他实现了代理模式)

**项目概述:** 本资源提供了一套采用Vue.js与JavaScript技术栈构建的古籍文献文字检测与识别系统的完整源代码及相关项目文档。当前系统版本为`v4.0+`,基于`vue-cli`脚手架工具开发。 **环境配置与运行指引:** 1. **获取项目文件**后,进入项目主目录。 2. 执行依赖安装命令: ```bash npm install ``` 若网络环境导致安装缓慢,可通过指定镜像源加速: ```bash npm install --registry=https://registry.npm.taobao.org ``` 3. 启动本地开发服务器: ```bash npm run dev ``` 启动后,可在浏览器中查看运行效果。 **构建与部署:** - 生成测试环境产物: ```bash npm run build:stage ``` - 生成生产环境优化版本: ```bash npm run build:prod ``` **辅助操作命令:** - 预览构建后效果: ```bash npm run preview ``` - 结合资源分析报告预览: ```bash npm run preview -- --report ``` - 代码质量检查与自动修复: ```bash npm run lint npm run lint -- --fix ``` **适用说明:** 本系统代码经过完整功能验证,运行稳定可靠。适用于计算机科学、人工智能、电子信息工程等相关专业的高校师生、研究人员及开发人员,可用于学术研究、课程实践、毕业设计或项目原型开发。使用者可在现有基础上进行功能扩展或定制修改,以满足特定应用场景需求。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【EI复现】基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度(Matlab代码实现)内容概要:本文介绍了基于阶梯碳交易机制的虚拟电厂优化调度模型,重点研究了包含P2G-CCS(电转气-碳捕集与封存)耦合技术和燃气掺氢技术的综合能源系统在Matlab平台上的仿真与代码实现。该模型充分考虑碳排放约束与阶梯式碳交易成本,通过优化虚拟电厂内部多种能源设备的协同运行,提升能源利用效率并降低碳排放。文中详细阐述了系统架构、数学建模、目标函数构建(涵盖经济性与环保性)、约束条件处理及求解方法,并依托YALMIP工具包调用求解器进行实例验证,实现了科研级复现。此外,文档附带网盘资源链接,提供完整代码与相关资料支持进一步学习与拓展。; 适合人群:具备一定电力系统、优化理论及Matlab编程基础的研究生、科研人员或从事综合能源系统、低碳调度方向的工程技术人员;熟悉YALMIP和常用优化算法者更佳。; 使用场景及目标:①学习和复现EI级别关于虚拟电厂低碳优化调度的学术论文;②掌握P2G-CCS、燃气掺氢等新型低碳技术在电力系统中的建模与应用;③理解阶梯碳交易机制对调度决策的影响;④实践基于Matlab/YALMIP的混合整数线性规划或非线性规划问题建模与求解流程。; 阅读建议:建议结合提供的网盘资源,先通读文档理解整体思路,再逐步调试代码,重点关注模型构建与代码实现之间的映射关系;可尝试修改参数、结构或引入新的约束条件以深化理解并拓展应用场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代老师的编程课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值