The contents of 《Hadoop: The Definitive Guide》(3rd Edition)

本书全面介绍了Hadoop的核心技术和实际应用场景,包括数据存储与分析、MapReduce编程模型、HDFS文件系统、数据输入输出机制等内容,并通过案例研究展示了Hadoop在不同领域的应用实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     Book Store
      
    Table of Contents
  1. Chapter 1 Meet Hadoop

    1. Data!
    2. Data Storage and Analysis
    3. Comparison with Other Systems
    4. A Brief History of Hadoop
    5. Apache Hadoop and the Hadoop Ecosystem
    6. Hadoop Releases
  2. Chapter 2 MapReduce

    1. A Weather Dataset
    2. Analyzing the Data with Unix Tools
    3. Analyzing the Data with Hadoop
    4. Scaling Out
    5. Hadoop Streaming
    6. Hadoop Pipes
  3. Chapter 3 The Hadoop Distributed Filesystem

    1. The Design of HDFS
    2. HDFS Concepts
    3. The Command-Line Interface
    4. Hadoop Filesystems
    5. The Java Interface
    6. Data Flow
    7. Data Ingest with Flume and Sqoop
    8. Parallel Copying with distcp
    9. Hadoop Archives
  4. Chapter 4 Hadoop I/O

    1. Data Integrity
    2. Compression
    3. Serialization
    4. Avro
    5. File-Based Data Structures
  5. Chapter 5 Developing a MapReduce Application

    1. The Configuration API
    2. Setting Up the Development Environment
    3. Writing a Unit Test with MRUnit
    4. Running Locally on Test Data
    5. Running on a Cluster
    6. Tuning a Job
    7. MapReduce Workflows
  6. Chapter 6 How MapReduce Works

    1. Anatomy of a MapReduce Job Run
    2. Failures
    3. Job Scheduling
    4. Shuffle and Sort
    5. Task Execution
  7. Chapter 7 MapReduce Types and Formats

    1. MapReduce Types
    2. Input Formats
    3. Output Formats
  8. Chapter 8 MapReduce Features

    1. Counters
    2. Sorting
    3. Joins
    4. Side Data Distribution
    5. MapReduce Library Classes
  9. Chapter 9 Setting Up a Hadoop Cluster

    1. Cluster Specification
    2. Cluster Setup and Installation
    3. SSH Configuration
    4. Hadoop Configuration
    5. YARN Configuration
    6. Security
    7. Benchmarking a Hadoop Cluster
    8. Hadoop in the Cloud
  10. Chapter 10 Administering Hadoop

    1. HDFS
    2. Monitoring
    3. Maintenance
  11. Chapter 11 Pig

    1. Installing and Running Pig
    2. An Example
    3. Comparison with Databases
    4. Pig Latin
    5. User-Defined Functions
    6. Data Processing Operators
    7. Pig in Practice
  12. Chapter 12 Hive

    1. Installing Hive
    2. An Example
    3. Running Hive
    4. Comparison with Traditional Databases
    5. HiveQL
    6. Tables
    7. Querying Data
    8. User-Defined Functions
  13. Chapter 13 HBase

    1. HBasics
    2. Concepts
    3. Installation
    4. Clients
    5. Example
    6. HBase Versus RDBMS
    7. Praxis
  14. Chapter 14 ZooKeeper

    1. Installing and Running ZooKeeper
    2. An Example
    3. The ZooKeeper Service
    4. Building Applications with ZooKeeper
    5. ZooKeeper in Production
  15. Chapter 15 Sqoop

    1. Getting Sqoop
    2. Sqoop Connectors
    3. A Sample Import
    4. Generated Code
    5. Imports: A Deeper Look
    6. Working with Imported Data
    7. Importing Large Objects
    8. Performing an Export
    9. Exports: A Deeper Look
  16. Chapter 16 Case Studies

    1. Hadoop Usage at Last.fm
    2. Hadoop and Hive at Facebook
    3. Nutch Search Engine
    4. Log Processing at Rackspace
    5. Cascading
    6. TeraByte Sort on Apache Hadoop
    7. Using Pig and Wukong to Explore Billion-edge Network Graphs

  1. Appendix Installing Apache Hadoop

  2. Appendix Cloudera’s Distribution Including Apache Hadoop

  3. Appendix Preparing the NCDC Weather Data

  4. Colophon




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值