softmax 损失函数与梯度推导

softmax与svm很类似,经常用来做对比,svm的loss function对wx的输出s使用了hinge function,即max(0,-),而softmax则是通过softmax function对输出s进行了概率解释,再通过cross entropy计算loss function。

将score映射到概率的softmax function:p_i=\frac{e^{f_{i}}}{\sum_{k}e^{f_k}} \quad (1),其中,f_i=W_ix,j指代 i-th class。

对于某一个样本如 X_i 的lost function为L_i = -\sum_{j}y_jlog(p_j) \quad (2).

(注:

1、以下所有的公式为了便于表达,设定只有一个样品,即L_i全部写做 L

2、公式中没有进行偏移,实际算法为了避免指

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值