行为识别论文笔记|TSN|Temporal Segment Networks: Towards Good Practices for Deep Action Recognition

行为识别论文笔记|TSN|Temporal Segment Networks: Towards Good Practices for Deep Action Recognition

Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool, ECCV 2016, Amsterdam, Netherlands.

Temporal Segment Networks for Action Recognition in Videos, Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool, TPAMI, 2018.

Motivations

  • Modeling long-range temporal structure is crucial for human activity recognition.
  • Frames in a video are highly redundant.
    • Modeling long-range temporal structure is not simply wrapping tons of frames. Frames are dense, but contents are sparse!
    • 现有CNNs只能处理较短的时间序列超大计算量,且需要太多训练样本标注成本受限所以现有很多数据集都不大

Solutions

  1. 别人的方法:

    1. 第一类:基于卷积的,Karpathy:fusion on Sports-1M、Simonyan:two-stream、Tran :C3D、Sun:FSTCN(分解3D卷积核,加速计算);还有一些论文处理更长时间的视频,用了CNN+RNN 结构,比如:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值