You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example:
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8 10 / \ 5 -3 / \ \ 3 2 11 / \ \ 3 -2 1 Return 3. The paths that sum to 8 are: 1. 5 -> 3 2. 5 -> 2 -> 1 3. -3 -> 11
public int pathSum(TreeNode root, int sum) {
return dfspathSum(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum);
}
public int dfspathSum(TreeNode root, int sum) {
int result = 0;
if (root == null) return result;
if (sum == root.val) result++;
result += dfspathSum(root.left, sum - root.val);
result += dfspathSum(root.right, sum - root.val);
return result;
}
下面的更有效率,19ms,而上面的38ms
int count = 0;
public int pathSum2(TreeNode root, int sum) {
int n = findDepth(root);
int[] path = new int[n];
findSum(root, sum, path, 0);
return count;
}
int findDepth(TreeNode root) {
if (root == null) return 0;
return Math.max(findDepth(root.left), findDepth(root.right)) + 1;
}
void findSum(TreeNode root, int sum, int[] path, int level) {
if (root == null) return;
path[level] = root.val;
int total = 0;
for (int i = level; i >= 0; i--) {
total += path[i];
if (total == sum) {
count = count + 1;
}
}
findSum(root.left, sum, path, level + 1);
findSum(root.right, sum, path, level + 1);
path[level] = Integer.MIN_VALUE;
}