设计模式-模版方法模式(8)

本文介绍模板方法模式,一种常用的设计模式,它定义了一个算法的骨架,允许子类填充某些步骤而不改变整体结构。通过银行办理业务流程的例子和排序任务的代码实现,详细解释了抽象方法、模板方法和钩子方法的概念。

定义:定义一个操作中算法的框架,而将一些步骤延迟到子类中,使得子类可以不改变算法的结构即可重定义该算法中的某些特定步骤。

类型:行为类模式

类图:

在面向对象开发过程中,通常我们会遇到这样的一个问题:我们知道一个算法所需的关键步骤,并确定了这些步骤的执行顺序。但是某些步骤的具体实现是未知的,或者说某些步骤的实现与具体的环境相关。
例子1:银行业务办理流程
在银行办理业务时,一般都包含几个基本固定步骤:
取号排队->办理具体业务->对银行工作人员进行评分。

取号取号排队和对银行工作人员进行评分业务逻辑是一样的。但是办理具体业务是个不相同的,具体业务可能取款、存款或者转账。

        事实上,模版方法是编程中一个经常用到的模式。先来看一个例子,某日,程序员A拿到一个任务:给定一个整数数组,把数组中的数由小到大排序,然后把排序之后的结果打印出来。经过分析之后,这个任务大体上可分为两部分,排序和打印,打印功能好实现,排序就有点麻烦了。但是A有办法,先把打印功能完成,排序功能另找人做。

abstract class AbstractSort {
	
	/**
	 * 将数组array由小到大排序
	 * @param array
	 */
	protected abstract void sort(int[] array);
	
	public void showSortResult(int[] array){
		this.sort(array);
		System.out.print("排序结果:");
		for (int i = 0; i < array.length; i++){
			System.out.printf("%3s", array[i]);
		}
	}
}

        写完后,A找到刚毕业入职不久的同事B说:有个任务,主要逻辑我已经写好了,你把剩下的逻辑实现一下吧。于是把AbstractSort类给B,让B写实现。B拿过来一看,太简单了,10分钟搞定,代码如下:

class ConcreteSort extends AbstractSort {

	@Override
	protected void sort(int[] array){
		for(int i=0; i<array.length-1; i++){
			selectSort(array, i);
		}
	}
	
	private void selectSort(int[] array, int index) {
		int MinValue = 32767; // 最小值变量
		int indexMin = 0; // 最小值索引变量
		int Temp; // 暂存变量
		for (int i = index; i < array.length; i++) {
			if (array[i] < MinValue){ // 找到最小值
				MinValue = array[i]; // 储存最小值
				indexMin = i; 
			}
		}
		Temp = array[index]; // 交换两数值
		array[index] = array[indexMin];
		array[indexMin] = Temp;
	}
}

写好后交给A,A拿来一运行:

public class Client {
	public static int[] a = { 10, 32, 1, 9, 5, 7, 12, 0, 4, 3 }; // 预设数据数组
	public static void main(String[] args){
		AbstractSort s = new ConcreteSort();
		s.showSortResult(a);
	}
}

运行结果:

排序结果:  0  1  3  4  5  7  9 10 12 32

        运行正常。行了,任务完成。没错,这就是模版方法模式。大部分刚步入职场的毕业生应该都有类似B的经历。一个复杂的任务,由公司中的牛人们将主要的逻辑写好,然后把那些看上去比较简单的方法写成抽象的,交给其他的同事去开发。这种分工方式在编程人员水平层次比较明显的公司中经常用到。比如一个项目组,有架构师,高级工程师,初级工程师,则一般由架构师使用大量的接口、抽象类将整个系统的逻辑串起来,实现的编码则根据难度的不同分别交给高级工程师和初级工程师来完成。怎么样,是不是用到过模版方法模式?

 

模版方法模式的结构

       模版方法模式由一个抽象类和一个(或一组)实现类通过继承结构组成,抽象类中的方法分为三种:

  • 抽象方法:父类中只声明但不加以实现,而是定义好规范,然后由它的子类去实现。
  • 模版方法:由抽象类声明并加以实现。一般来说,模版方法调用抽象方法来完成主要的逻辑功能,并且,模版方法大多会定义为final类型,指明主要的逻辑功能在子类中不能被重写。
  • 钩子方法:由抽象类声明并加以实现。但是子类可以去扩展,子类可以通过扩展钩子方法来影响模版方法的逻辑。
  • 抽象类的任务是搭建逻辑的框架,通常由经验丰富的人员编写,因为抽象类的好坏直接决定了程序是否稳定性。

       实现类用来实现细节。抽象类中的模版方法正是通过实现类扩展的方法来完成业务逻辑。只要实现类中的扩展方法通过了单元测试,在模版方法正确的前提下,整体功能一般不会出现大的错误。

 

模版方法的优点及适用场景

       容易扩展。一般来说,抽象类中的模版方法是不易反生改变的部分,而抽象方法是容易反生变化的部分,因此通过增加实现类一般可以很容易实现功能的扩展,符合开闭原则。

       便于维护。对于模版方法模式来说,正是由于他们的主要逻辑相同,才使用了模版方法,假如不使用模版方法,任由这些相同的代码散乱的分布在不同的类中,维护起来是非常不方便的。

       比较灵活。因为有钩子方法,因此,子类的实现也可以影响父类中主逻辑的运行。但是,在灵活的同时,由于子类影响到了父类,违反了里氏替换原则,也会给程序带来风险。这就对抽象类的设计有了更高的要求。

模板方法应用于下列情况:

• 1) 一次性实现一个算法的不变的部分,并将可变的行为留给子类来实现。

• 2)各子类中公共的行为应被提取出来并集中到一个公共父类中以避免代码重复。首先识别现有代码中的不同之处,并且将不同之处分离为新的操作。最后,用一个调用这些新的操作的模板方法来替换这些不同的代码。

• 3)控制子类扩展。模板方法只在特定点调用“ hook”操作 ,这样就只允许在这些点进行扩展。

       在多个子类拥有相同的方法,并且这些方法逻辑相同时,可以考虑使用模版方法模式。在程序的主框架相同,细节不同的场合下,也比较适合使用这种模式。

 

<think>好的,用户想了解模板方法设计模式的原理与实现。首先,我需要回忆模板方法模式的基本概念。根据引用[3],模板方法模式定义了一个操作中的算法框架,将一些步骤推迟到子类中实现。这样可以在不改变算法结构的情况下,让子类重新定义某些步骤。 接下来,用户可能想知道原理部分。根据引用[4],模板方法模式通过抽象类中的模板方法规定算法结构和执行顺序,具体步骤由子类实现。这意味着父类控制流程,子类负责具体实现。需要解释这种分层的设计如何提高代码复用,并允许子类扩展特定步骤。 然后是结构部分。通常模板方法模式包含抽象类和具体子类。抽象类中的模板方法是final的,避免子类修改算法结构,而抽象方法由子类实现。比如引用[5]中的prepare_recipe()方法作为模板方法,定义了制作饮料的步骤,具体步骤如brew()和addCondiments()由子类实现。 实现方式方面,需要给出代码示例。比如制作咖啡和茶的例子,抽象类定义模板方法,子类实现具体步骤。根据引用[2],咖啡和茶的冲泡过程有相似的步骤,可以抽象到父类,不同步骤由子类覆盖。 应用场景部分,引用[3]提到当多个类有相同的方法但某些步骤不同时适用。例如数据处理流程、文档生成等。需要举几个例子说明适用情况。 可能还需要对比其他模式,比如策略模式。根据引用[1],策略模式使用组合来改变整个算法,而模板方法使用继承来改变部分步骤。这点需要区分清楚,避免用户混淆。 最后,总结优缺点。优点包括代码复用、扩展性,缺点则是子类必须遵循框架,可能不够灵活,如引用[1]提到可能限制子类灵活性。需要客观说明适用场景和潜在限制。 检查是否覆盖了用户需求:定义、原理、结构、实现、应用场景、优缺点。确保引用正确,每个引用对应的内容是否准确。比如引用[5]中的prepare_recipe作为模板方法的例子,引用[4]中的算法框架定义。确保回答结构清晰,分点明确,代码示例正确使用$$格式,行内公式用$符号。</think>### 模板方法设计模式的原理与实现 #### 一、定义与核心思想 模板方法模式(Template Method Pattern)是一种**行为型设计模式**,其核心思想是**定义一个算法的框架,允许子类在不改变算法结构的前提下重写某些步骤**。该模式通过抽象类实现,包含两类方法: 1. **模板方法**:定义算法骨架的固定流程,通常为`final`方法以防止子类修改[^3][^4]。 2. **抽象方法**:由子类实现的步骤,用于扩展或定制算法细节[^5]。 例如,制作咖啡和茶的流程可抽象为“烧水→冲泡→添加调料”的固定框架,而具体的冲泡和调料添加由子类实现[^2]。 --- #### 二、核心原理 1. **算法骨架固定化** 抽象类中通过模板方法规定执行顺序(如`prepare_recipe()`),子类仅需实现差异化的步骤(如`brew()`和`addCondiments()`)。 $$ \text{模板方法} = \text{固定步骤} + \text{抽象方法} $$ 2. **好莱坞原则(Hollywood Principle)** “不要调用我们,我们会调用你”——父类控制流程,子类被动响应具体步骤的调用。 --- #### 三、代码实现示例 以饮料制作为例,抽象类定义模板方法,子类实现具体步骤: ```java // 抽象类定义模板方法 abstract class CaffeineBeverage { // 模板方法(final防止子类修改结构) public final void prepareRecipe() { boilWater(); brew(); pourInCup(); addCondiments(); } // 公共步骤直接实现 void boilWater() { System.out.println("烧水"); } void pourInCup() { System.out.println("倒入杯子"); } // 子类必须实现的抽象方法 abstract void brew(); abstract void addCondiments(); } // 具体子类:咖啡 class Coffee extends CaffeineBeverage { void brew() { System.out.println("冲泡咖啡粉"); } void addCondiments() { System.out.println("加糖和牛奶"); } } // 具体子类:茶 class Tea extends CaffeineBeverage { void brew() { System.out.println("浸泡茶叶"); } void addCondiments() { System.out.println("加柠檬"); } } ``` --- #### 四、应用场景 1. **流程标准化**:多个类有相同流程但部分步骤不同(如数据处理、文档生成)[^3]。 2. **框架设计**:框架定义主流程,用户通过子类扩展细节(如Spring的`JdbcTemplate`)。 3. **避免代码重复**:将公共代码提升到父类,差异化代码下放至子类[^2]。 --- #### 五、优缺点分析 | **优点** | **缺点** | |----------------------------------|---------------------------------------| | 提高代码复用性(公共逻辑集中管理)[^2] | 可能因过度抽象增加系统复杂度 | | 子类只需关注差异部分 | 父类修改模板方法会影响所有子类[^1] | | 符合开闭原则(扩展开放,修改关闭) | 对简单流程可能造成设计过度[^3] | --- #### 六、与其他模式对比 - **策略模式(Strategy Pattern)** 策略模式通过组合替换整个算法,而模板方法模式通过继承修改部分步骤[^4]。 - **工厂方法模式(Factory Method)** 工厂方法是模板方法的一种特殊形式,专注于对象创建步骤的分工。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值