Double Dealing
Time Limit: 50000/20000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1924 Accepted Submission(s): 679
Problem Description
Take a deck of
n unique cards. Deal the entire deck out to
k players in the usual way: the top card to player 1, the next to player 2, the
k
th to player
k, the
k+1
st to player 1, and so on. Then pick up the cards – place player 1′s cards on top, then player 2, and so on, so that player
k’s cards are on the bottom. Each player’s cards are in reverse order – the last card that they were dealt is on the top, and the first on the bottom.
How many times, including the first, must this process be repeated before the deck is back in its original order?
How many times, including the first, must this process be repeated before the deck is back in its original order?
Input
There will be multiple test cases in the input. Each case will consist of a single line with two integers,
n and
k (1≤
n≤800, 1≤
k≤800). The input will end with a line with two 0s.
Output
For each test case in the input, print a single integer, indicating the number of deals required to return the deck to its original order. Output each integer on its own line, with no extra spaces, and no blank lines between answers. All possible inputs yield answers which will fit in a signed 64-bit integer.
Sample Input
1 3 10 3 52 4 0 0
Sample Output
1 4 13
Source
Recommend
求置换群循环节的lcm
注意lcm(x1..xn)=lcm(x1,lcm(x2..xn)!=x1*..*xn/gcd
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
char s[]="no solution\n";
class Math
{
public:
ll gcd(ll a,ll b){if (!b) return a;return gcd(b,a%b);}
ll abs(ll x){if (x>=0) return x;return -x;}
ll exgcd(ll a,ll b,ll &x, ll &y)
{
if (!b) {x=1,y=0;return a;}
ll g=exgcd(b,a%b,x,y);
ll t=x;x=y;y=t-a/b*y;
return g;
}
ll pow2(ll a,int b,ll p)
{
if (b==0) return 1;
if (b==1) return a;
ll c=pow2(a,b/2,p);
c=c*c%p;
if (b&1) c=c*a%p;
return c;
}
ll Modp(ll a,ll b,ll p)
{
ll x,y;
ll g=exgcd(a,p,x,y),d;
if (b%g) {return -1;}
d=b/g;x*=d,y*=d;
x=(x+abs(x)/p*p+p)%p;
return x;
}
int h[MAXN];
ll hnum[MAXN];
int hash(ll x)
{
int i=x%MAXN;
while (h[i]&&hnum[i]!=x) i=(i+1)%MAXN;
hnum[i]=x;
return i;
}
ll babystep(ll a,ll b,int p)
{
MEM(h) MEM(hnum)
int m=sqrt(p);while (m*m<p) m++;
ll res=b,ans=-1;
ll uni=pow2(a,m,p);
if (!uni) if (!b) ans=1;else ans=-1; //特判
else
{
Rep(i,m+1)
{
int t=hash(res);
h[t]=i+1;
res=(res*a)%p;
}
res=uni;
For(i,m+1)
{
int t=hash(res);
if (h[t]) {ans=i*m-(h[t]-1);break;}else hnum[t]=0;
res=res*uni%p;
}
}
return ans;
}
}S;
int a[10000+10];
bool b[10000+10];
int p[10000+10];
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout);
int n,k;
while(cin>>n>>k)
{
if (n+k==0) return 0;
int s=0;
For(j,k)
for(int i=n/k*k+j>n?n/k*k+j-k:n/k*k+j;i>=1;i-=k) a[++s]=i;
// For(i,n) cout<<a[i]<<' ';
int tot=0;
MEM(b)
For(i,n)
{
if (!b[i])
{
int t=i; b[i]=1;
int len=1;
do {
b[t]=1;
t=a[t]; ++len;
// cout<<t<<endl;
} while (!b[t]);
len--;
p[++tot]=len;
}
}
sort(p+1,p+1+tot);
tot=unique(p+1,p+1+tot)-(p+1);
// For(i,tot) cout<<p[i]<<' ';
ll ans=1;
For(i,tot) ans=ans/S.gcd(p[i],ans)*p[i];
cout<<ans<<endl;
}
return 0;
}
本文深入探讨了算法与数据结构的核心概念及其在实际应用中的高效解决方案,涵盖了排序算法、动态规划、哈希算法、贪心算法等关键领域,为开发者提供了深入理解并灵活运用这些技术的指南。

被折叠的 条评论
为什么被折叠?



