摘自:http://blog.youkuaiyun.com/andkobe/article/details/6185973
cv::Mat和CvMat都可以表示图像数据,只是却不明白他们之间到底什么区别,用CV::MAT 每次都有56byte的内存泄露。后来查看了源码才知道原来cv::Mat是一个类(Class),而CvMat是一个Struct。前者除了几个成员变量之外还有很多的成员函数和重载函数,可以实现很多的图像数据处理功能,而后者只有几个成员变量,要对其成员进行一些处理,需要借用别的函数。
摘自:http://263796001-qq-com.iteye.com/blog/1409639
OpenCV中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage。
一、Mat类型:矩阵类型,Matrix。
在openCV中,Mat是一个多维的密集数据数组。可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。
Mat有3个重要的方法:
1、Mat mat = imread(const String* filename); 读取图像
2、imshow(const string frameName, InputArray mat); 显示图像
3、imwrite (const string& filename, InputArray img); 储存图像
Mat类型较CvMat与IplImage类型来说,有更强的矩阵运算能力,支持常见的矩阵运算。在计算密集型的应用当中,将CvMat与IplImage类型转化为Mat类型将大大减少计算时间花费。
关于Mat的数学方面的函数略过。
二、CvMat类型与IplImage类型:“图像”类型
在openCV中,Mat类型与CvMat和IplImage类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,openCV对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。
我们知道openCV是完全用C实现的,但是,IplImage类型与CvMat类型的关系就像是java(C++?)中的继承关系。实际上,CvMat之上还有一个更抽象的基类----CvArr,这在源代码中会常见。
关于CvMat:
其定义如下:
- <span style="font-size: medium;">typedef struct CvMat
- {
- int type;
- int step;
- /* for internal use only */
- int* refcount;
- int hdr_refcount;
- union
- {
- uchar* ptr;
- short* s;
- int* i;
- float* fl;
- double* db;
- } data;
- #ifdef __cplusplus
- union
- {
- int rows;
- int height;
- };
- union
- {
- int cols;
- int width;
- };
- #else
- int rows;
- int cols;
- #endif
- }
- CvMat;</span>
在openCV中,没有向量(vector)的数据结构。任何时候,但我们要表示向量时,用矩阵数据表示即可。但是,CvMat类型与我们在线性代数课程上学的向量概念相比,更抽象,比如CvMat的元素数据类型并不仅限于基础数据类型,比如,下面创建一个二维数据矩阵:
CvMat* cvCreatMat(int rows ,int cols , int type);
这里的type可以是任意的预定义数据类型,比如RGB或者别的多通道数据。这样我们便可以在一个CvMat矩阵上表示丰富多彩的图像了。
关于IplImage:
在类型关系上,我们可以说IplImage类型继承自CvMat类型,当然还包括其他的变量将之解析成图像数据。
其定义如下:
- <span style="font-size: medium;">typedef struct _IplImage
- {
- int nSize; /* sizeof(IplImage) */
- int ID; /* version (=0)*/
- int nChannels; /* Most of OpenCV functions support 1,2,3 or 4 channels */
- int alphaChannel; /* Ignored by OpenCV */
- int depth; /* Pixel depth in bits: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16S,
- IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F are supported. */
- char colorModel[4]; /* Ignored by OpenCV */
- char channelSeq[4]; /* ditto */
- int dataOrder; /* 0 - interleaved color channels, 1 - separate color channels.
- cvCreateImage can only create interleaved images */
- int origin; /* 0 - top-left origin,
- 1 - bottom-left origin (Windows bitmaps style). */
- int align; /* Alignment of image rows (4 or 8).
- OpenCV ignores it and uses widthStep instead. */
- int width; /* Image width in pixels. */
- int height; /* Image height in pixels. */
- struct _IplROI *roi; /* Image ROI. If NULL, the whole image is selected. */
- struct _IplImage *maskROI; /* Must be NULL. */
- void *imageId; /* " " */
- struct _IplTileInfo *tileInfo; /* " " */
- int imageSize; /* Image data size in bytes
- (==image->height*image->widthStep
- in case of interleaved data)*/
- char *imageData; /* Pointer to aligned image data. */
- int widthStep; /* Size of aligned image row in bytes. */
- int BorderMode[4]; /* Ignored by OpenCV. */
- int BorderConst[4]; /* Ditto. */
- char *imageDataOrigin; /* Pointer to very origin of image data
- (not necessarily aligned) -
- needed for correct deallocation */
- }
- IplImage;</span>
我们可以看到,IplImage类型较之CvMat多了很多参数,比如depth和nChannels。在普通的矩阵类型当中,通常深度和通道数被同时表示,如用32位表示RGB+Alpha.但是,在图像处理中,我们往往将深度与通道数分开处理,这样做是OpenCV对图像表示的一种优化方案。
IplImage的对图像的另一种优化是变量origin----原点。在计算机视觉处理上,一个重要的不便是对原点的定义不清楚,图像来源,编码格式,甚至操作系统都会对原地的选取产生影响。为了弥补这一点,openCV允许用户定义自己的原点设置。取值0表示原点位于图片左上角,1表示左下角。
dataOrder参数定义数据的格式。有IPL_DATA_ORDER_PIXEL和IPL_DATA_ORDER_PLANE两种取值,前者便是对于像素,不同的通道的数据交叉排列,后者表示所有通道按顺序平行排列。
IplImage类型的所有额外变量都是对“图像”的表示与计算能力的优化。
摘自: http://blog.youkuaiyun.com/wuxiaoyao12/article/details/7305848
一、Mat类型:矩阵类型,Matrix。
A.Mat -> IplImage
同样只是创建图像头,而没有复制数据。
例: // 假设Mat类型的imgMat图像数据存在
IplImage pImg= IplImage(imgMat);
B.Mat -> CvMat
与IplImage的转换类似,不复制数据,只创建矩阵头。
例: // 假设Mat类型的imgMat图像数据存在
CvMat cvMat = imgMat;
二、CvMat类型与IplImage类型:“图像”类型
在openCV中,Mat类型与CvMat和IplImage类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,openCV对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。
补充:IplImage由CvMat派生,而CvMat由CvArr派生即CvArr -> CvMat -> IplImage
CvArr用作函数的参数,无论传入的是CvMat或IplImage,内部都是按CvMat处理。
1.CvMat
A.CvMat-> IplImage
IplImage* img = cvCreateImage(cvGetSize(mat),8,1);
cvGetImage(matI,img);
cvSaveImage("rice1.bmp",img);
B.CvMat->Mat
与IplImage的转换类似,可以选择是否复制数据。
Mat::Mat(const CvMat* m, bool copyData=false);
在openCV中,没有向量(vector)的数据结构。任何时候,但我们要表示向量时,用矩阵数据表示即可。
但是,CvMat类型与我们在线性代数课程上学的向量概念相比,更抽象,比如CvMat的元素数据类型并不仅限于基础数据类型,比如,下面创建一个二维数据矩阵:
CvMat* cvCreatMat(int rows ,int cols , int type);
这里的type可以是任意的预定义数据类型,比如RGB或者别的多通道数据。这样我们便可以在一个CvMat矩阵上表示丰富多彩的图像了。
2.IplImage
在类型关系上,我们可以说IplImage类型继承自CvMat类型,当然还包括其他的变量将之解析成图像数据。
IplImage类型较之CvMat多了很多参数,比如depth和nChannels。在普通的矩阵类型当中,通常深度和通道数被同时表示,如用32位表示RGB+Alpha.但是,在图像处理中,我们往往将深度与通道数分开处理,这样做是OpenCV对图像表示的一种优化方案。
IplImage的对图像的另一种优化是变量origin----原点。在计算机视觉处理上,一个重要的不便是对原点的定义不清楚,图像来源,编码格式,甚至操作系统都会对原地的选取产生影响。为了弥补这一点,openCV允许用户定义自己的原点设置。取值0表示原点位于图片左上角,1表示左下角。
dataOrder参数定义数据的格式。有IPL_DATA_ORDER_PIXEL和IPL_DATA_ORDER_PLANE两种取值,前者便是对于像素,不同的通道的数据交叉排列,后者表示所有通道按顺序平行排列。
IplImage类型的所有额外变量都是对“图像”的表示与计算能力的优化。
A.IplImage -> Mat
IplImage* pImg = cvLoadImage("lena.jpg");
Mat img(pImg,0); // 0是不複製影像,也就是pImg與img的data共用同個記憶體位置,header各自有
B.IplImage -> CvMat
法1:CvMat mathdr, *mat = cvGetMat( img, &mathdr );
法2:CvMat *mat = cvCreateMat( img->height, img->width, CV_64FC3 );
cvConvert( img, mat );
C.IplImage*-> BYTE*
BYTE* data= img->imageData;
CvMat和IplImage创建时的一个小区别:
1、建立矩阵时,第一个参数为行数,第二个参数为列数。
CvMat* cvCreateMat( int rows, int cols, int type );
2、建立图像时,CvSize第一个参数为宽度,即列数;第二个参数为高度,即行数。这 个和CvMat矩阵正好相反。
IplImage* cvCreateImage(CvSize size, int depth, int channels );
CvSize cvSize( int width, int height );
IplImage内部buffer每行是按4字节对齐的,CvMat没有这个限制
补充:
A.BYTE*-> IplImage*
img= cvCreateImageHeader(cvSize(width,height),depth,channels);
cvSetData(img,data,step);
//首先由cvCreateImageHeader()创建IplImage图像头,制定图像的尺寸,深度和通道数;
//然后由cvSetData()根据BYTE*图像数据指针设置IplImage图像头的数据数据,
//其中step指定该IplImage图像每行占的字节数,对于1通道的IPL_DEPTH_8U图像,step可以等于width。