Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:s = 7, nums = [2,3,1,2,4,3]Output: 2 Explanation: the subarray[4,3]has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).


代码:
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int l=0,r=-1; //sum[0,-1]
int sum=0;
int length=nums.length+1;
while(l<nums.length-1) {
if(r+1<nums.length&&sum<s){
sum+=nums[++r];
}else{
sum-=nums[l++];
}
if(sum>=s)
length=Math.min(length,r-l+1);
}
if(length==nums.length+1)
return 0;
return length;
}
}

本文介绍了一种在给定正整数数组中寻找最小子数组的方法,该子数组的和大于或等于特定值s。通过O(n)的时间复杂度算法实现,同时探讨了O(nlogn)的解决方案。
1108

被折叠的 条评论
为什么被折叠?



