textming 视频教学

博客提供了一个链接http://videolectures.net/kdd07_grobelnik_tmala/ ,推测与KDD07相关视频有关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Key Features Develop all the relevant skills for building text-mining apps with R with this easy-to-follow guide Gain in-depth understanding of the text mining process with lucid implementation in the R language Example-rich guide that lets you gain high-quality information from text data Book Description Text Mining (or text data mining or text analytics) is the process of extracting useful and high-quality information from text by devising patterns and trends. R provides an extensive ecosystem to mine text through its many frameworks and packages. Starting with basic information about the statistics concepts used in text mining, this book will teach you how to access, cleanse, and process text using the R language and will equip you with the tools and the associated knowledge about different tagging, chunking, and entailment approaches and their usage in natural language processing. Moving on, this book will teach you different dimensionality reduction techniques and their implementation in R. Next, we will cover pattern recognition in text data utilizing classification mechanisms, perform entity recognition, and develop an ontology learning framework. By the end of the book, you will develop a practical application from the concepts learned, and will understand how text mining can be leveraged to analyze the massively available data on social media. What you will learn Get acquainted with some of the highly efficient R packages such as OpenNLP and RWeka to perform various steps in the text mining process Access and manipulate data from different sources such as JSON and HTTP Process text using regular expressions Get to know the different approaches of tagging texts, such as POS tagging, to get started with text analysis Explore different dimensionality reduction techniques, such as Principal Component Analysis (PCA), and understand its implementation in R Discover the underlying themes or topics that are present in an unstructured collection of documents, using common topic models such as Latent Dirichlet Allocation (LDA) Build a baseline sentence completing application Perform entity extraction and named entity recognition using R About the Author Ashish Kumar is an IIM alumnus and an engineer at heart. He has extensive experience in data science, machine learning, and natural language processing having worked at organizations, such as McAfee-Intel, an ambitious data science startup Volt consulting), and presently associated to the software and research lab of a leading MNC. Apart from work, Ashish also participates in data science competitions at Kaggle in his spare time. Avinash Paul is a programming language enthusiast, loves exploring open sources technologies and programmer by choice. He has over nine years of programming experience. He has worked in Sabre Holdings , McAfee , Mindtree and has experience in data-driven product development, He was intrigued by data science and data mining while developing niche product in education space for a ambitious data science start-up. He believes data science can solve lot of societal challenges. In his spare time he loves to read technical books and teach underprivileged children back home. Table of Contents Chapter 1. Statistical Linguistics with R Chapter 2. Processing Text Chapter 3. Categorizing and Tagging Text Chapter 4. Dimensionality Reduction Chapter 5. Text Summarization and Clustering Chapter 6. Text Classification Chapter 7. Entity Recognition
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值