测试计划编写7要素?(6W1H)

本文详细阐述了测试计划编写中的七个关键要素:目的、范围、时间、资源、执行者、策略和风险考虑,帮助读者全面理解并实施有效的测试计划。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

测试计划编写7要素?(6W1H)

 

       1) why——为什么要进行这些测试;  Purpose

  2) what—测试哪些方面,不同阶段的工作内容; Scope

  3) when—测试不同阶段的起止时间; Schedule

  4) where—相应文档,缺陷的存放位置,测试环境等; Resourse

  5) who—项目有关人员组成,安排哪些测试人员进行测试; Ownership

  6) how—如何去做,使用哪些测试工具以及测试方法进行测试;Strategy

  7) worry—考虑有什风险存在,准备些解决方案; Risk

 

 

LeetCode 题目 491 - 递增子序列 (Incremental Subsequence) 是一道关于算法设计的中等难度题目。这道题要求你在给定整数数组 nums 中找出所有长度大于等于 1 的递增子序列。递增子序列是指数组中的一串连续元素,它们按照顺序严格增大。 解决这个问题的一个常见策略是使用动态规划(Dynamic Programming),特别是哈希表或者单调栈(Monotonic Stack)。你可以维护一个栈,每当遍历到一个比栈顶元素大的数字时,就将它推入栈,并更新当最长递增子序列的长度。同时,如果遇到一个不大于栈顶元素的数字,就从栈顶开始检查是否存在更长的递增子序列。 以下是 C++ 解决此问题的一种简单实现: ```cpp class Solution { public: vector<int> lengthOfLIS(vector<int>& nums) { int n = nums.size(); if (n == 0) return {}; // 使用单调栈存储当已知的最大子序列 stack<pair<int, int>> stk; stk.push({nums[0], 1}); for (int i = 1; i < n; ++i) { while (!stk.empty() && nums[i] > stk.top().first) { // 如果新数大于栈顶元素,找到一个更长的递增子序列 int len = stk.top().second + 1; ans.push_back(len); stk.pop(); } // 如果新数不大于栈顶元素,尝试从当位置开始寻找更长子序列 if (!stk.empty()) { stk.top().second = max(stk.top().second, 1); } else { stk.push({nums[i], 1}); } } return ans; } private: vector<int> ans; }; ``` 在这个解决方案中,`ans` 存储所有的递增子序列长度,最后返回这个结果向量即可。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值