memcached测试

package com.danga.MemCached.test;

import com.danga.MemCached.*;
import java.util.*;

public class MemCachedThreadBench {

private static class WorkerStat {
public int start, runs;
public long setterTime, getterTime;

public WorkerStat() {
start = runs = 0;
setterTime = getterTime = 0;
}
}

public static void main(String[] args) throws Exception {

if( args.length != 4 ) {
System.out.println( "Usage: java " + MemCachedThreadBench.class.getName()
+ " <runs> <start> <port> <threads>" );
System.exit(1);
}

int runs = Integer.parseInt(args[0]);
int start = Integer.parseInt(args[1]);
String[] serverlist = { "127.0.0.1:" + args[2] };
int threads = Integer.parseInt( args[3] );

SockIOPool pool = SockIOPool.getInstance();
pool.setServers(serverlist);

pool.setInitConn( threads );
pool.setMinConn( threads );
pool.setMaxConn(500);
pool.setMaintSleep(30);

pool.setNagle(false);
pool.initialize();

WorkerStat [] statArray = new WorkerStat[ threads ];
Thread [] threadArray = new Thread[ threads ];

WorkerStat mainStat = new WorkerStat();
mainStat.runs = runs * threads;

long begin = System.currentTimeMillis();

for (int i = 0; i < threads; i++) {
statArray[i] = new WorkerStat();
statArray[i].start = start + i * runs;
statArray[i].runs = runs;
threadArray[i] = new SetterThread( statArray[i] );
threadArray[i].start();
}

for( int i = 0; i < threads; i++ ) {
threadArray[i].join();
}

mainStat.setterTime = System.currentTimeMillis() - begin;

begin = System.currentTimeMillis();

for (int i = 0; i < threads; i++) {
threadArray[i] = new GetterThread( statArray[i] );
threadArray[i].start();
}

for( int i = 0; i < threads; i++ ) {
threadArray[i].join();
}

mainStat.getterTime = System.currentTimeMillis() - begin;

SockIOPool.getInstance().shutDown();

WorkerStat totalStat = new WorkerStat();

System.out.println( "Thread/tstart/truns/tset time(ms)/tget time(ms)" );
for( int i = 0; i < threads; i++ ) {
System.out.println( "" + i + "/t" + statArray[i].start + "/t" +
statArray[i].runs + "/t" + statArray[i].setterTime + "/t/t"
+ statArray[i].getterTime );

totalStat.runs = totalStat.runs + statArray[i].runs;
totalStat.setterTime = totalStat.setterTime + statArray[i].setterTime;
totalStat.getterTime = totalStat.getterTime + statArray[i].getterTime;
}

System.out.println( "/nAvg/t/t" + runs + "/t" + totalStat.setterTime / threads
+ "/t/t" + totalStat.getterTime / threads );

System.out.println( "/nTotal/t/t" + totalStat.runs + "/t"
+ totalStat.setterTime + "/t/t" + totalStat.getterTime );
System.out.println( "/tReqPerSecond/tset - " + 1000 * totalStat.runs / totalStat.setterTime
+ "/tget - " + 1000 * totalStat.runs / totalStat.getterTime );

System.out.println( "/nMain/t/t" + mainStat.runs + "/t"
+ mainStat.setterTime + "/t/t" + mainStat.getterTime );
System.out.println( "/tReqPerSecond/tset - " + 1000 * mainStat.runs / mainStat.setterTime
+ "/tget - " + 1000 * mainStat.runs / mainStat.getterTime );
}

private static class SetterThread extends Thread {
private WorkerStat stat;

SetterThread( WorkerStat stat ) {
this.stat = stat;
}

public void run() {
MemCachedClient mc = new MemCachedClient();
mc.setCompressEnable(false);

String keyBase = "testKey";
String object = "This is a test of an object blah blah es, "
+ "serialization does not seem to slow things down so much. "
+ "The gzip compression is horrible horrible performance, "
+ "so we only use it for very large objects. "
+ "I have not done any heavy benchmarking recently";

long begin = System.currentTimeMillis();
for (int i = stat.start; i < stat.start + stat.runs; i++) {
mc.set( "" + i + keyBase, object);
}
long end = System.currentTimeMillis();

stat.setterTime = end - begin;
}
}

private static class GetterThread extends Thread {
private WorkerStat stat;

GetterThread( WorkerStat stat ) {
this.stat = stat;
}

public void run() {
MemCachedClient mc = new MemCachedClient();
mc.setCompressEnable(false);

String keyBase = "testKey";

long begin = System.currentTimeMillis();
for (int i = stat.start; i < stat.start + stat.runs; i++) {
String str = (String) mc.get( "" + i + keyBase );
}
long end = System.currentTimeMillis();

stat.getterTime = end - begin;
}
}
}

Note:
    转载出处: http://code.google.com/p/spcached/wiki/benchmarktool
【轴承故障诊断】加权多尺度字典学习模型(WMSDL)及其在轴承故障诊断上的应用(Matlab代码实现)内容概要:本文介绍了加权多尺度字典学习模型(WMSDL)在轴承故障诊断中的应用,并提供了基于Matlab的代码实现。该模型结合多尺度分析与字典学习技术,能够有效提取轴承振动信号中的故障特征,提升故障识别精度。文档重点阐述了WMSDL模型的理论基础、算法流程及其在实际故障诊断中的实施步骤,展示了其相较于传统方法在特征表达能力和诊断准确性方面的优势。同时,文中还提及该资源属于一个涵盖多个科研方向的技术合集,包括智能优化算法、机器学习、信号处理、电力系统等多个领域的Matlab仿真案例。; 适合人群:具备一定信号处理和机器学习基础,从事机械故障诊断、工业自动化、智能制造等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①学习并掌握加权多尺度字典学习模型的基本原理与实现方法;②将其应用于旋转机械的轴承故障特征提取与智能诊断;③结合实际工程数据复现算法,提升故障诊断系统的准确性和鲁棒性。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注字典学习的训练过程与多尺度分解的实现细节,同时可参考文中提到的其他相关技术(如VMD、CNN、BILSTM等)进行对比实验与算法优化。
【硕士论文复现】可再生能源发电与电动汽车的协同调度策略研究(Matlab代码实现)内容概要:本文档围绕“可再生能源发电与电动汽车的协同调度策略研究”展开,旨在通过Matlab代码复现硕士论文中的核心模型与算法,探讨可再生能源(如风电、光伏)与大规模电动汽车接入电网后的协同优化调度方法。研究重点包括考虑需求侧响应的多时间尺度调度、电动汽车集群有序充电优化、源荷不确定性建模及鲁棒优化方法的应用。文中提供了完整的Matlab实现代码与仿真模型,涵盖从场景生成、数学建模到求解算法(如NSGA-III、粒子群优化、ADMM等)的全过程,帮助读者深入理解微电网与智能电网中的能量管理机制。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源、智能电网、电动汽车等领域技术研发的工程人员。; 使用场景及目标:①用于复现和验证硕士论文中的协同调度模型;②支撑科研工作中关于可再生能源消纳、电动汽车V2G调度、需求响应机制等课题的算法开发与仿真验证;③作为教学案例辅助讲授能源互联网中的优化调度理论与实践。; 阅读建议:建议结合文档提供的网盘资源下载完整代码,按照目录顺序逐步学习各模块实现,重点关注模型构建逻辑与优化算法的Matlab实现细节,并通过修改参数进行仿真实验以加深理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值