首先看下sensor的hal层头文件:hardware\libhardware\include\hardware
typedef struct {
union {
float v[3];
struct {
float x;
float y;
float z;
};
struct {
float azimuth;
float pitch;
float roll;
};
};
int8_t status;
uint8_t reserved[3];
} sensors_vec_t;
/**
* Union of the various types of sensor data
* that can be returned.
*/
typedef struct sensors_event_t {
/* must be sizeof(struct sensors_event_t) */
int32_t version;
/* sensor identifier */
int32_t sensor;
/* sensor type */
int32_t type;
/* reserved */
int32_t reserved0;
/* time is in nanosecond */
int64_t timestamp;
union {
float data[16];
/* acceleration values are in meter per second per second (m/s^2) */
sensors_vec_t acceleration;
/* magnetic vector values are in micro-Tesla (uT) */
sensors_vec_t magnetic;
/* orientation values are in degrees */
sensors_vec_t orientation;
/* gyroscope values are in rad/s */
sensors_vec_t gyro;
/* temperature is in degrees centigrade (Celsius) */
float temperature;
/* distance in centimeters */
float distance;
/* light in SI lux units */
float light;
/* pressure in hectopascal (hPa) */
float pressure;
/* relative humidity in percent */
float relative_humidity;
};
uint32_t reserved1[4];
} sensors_event_t;
struct sensor_t;
/**
* Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
* and the fields of this data structure must begin with hw_module_t
* followed by module specific information.
*/
struct sensors_module_t {
struct hw_module_t common;
/**
* Enumerate all available sensors. The list is returned in "list".
* @return number of sensors in the list
*/
int (*get_sensors_list)(struct sensors_module_t* module,
struct sensor_t const** list);
};
struct sensor_t {
/* name of this sensors */
const char* name;
/* vendor of the hardware part */
const char* vendor;
/* version of the hardware part + driver. The value of this field
* must increase when the driver is updated in a way that changes the
* output of this sensor. This is important for fused sensors when the
* fusion algorithm is updated.
*/
int version;
/* handle that identifies this sensors. This handle is used to activate
* and deactivate this sensor. The value of the handle must be 8 bits
* in this version of the API.
*/
int handle;
/* this sensor's type. */
int type;
/* maximaum range of this sensor's value in SI units */
float maxRange;
/* smallest difference between two values reported by this sensor */
float resolution;
/* rough estimate of this sensor's power consumption in mA */
float power;
/* minimum delay allowed between events in microseconds. A value of zero
* means that this sensor doesn't report events at a constant rate, but
* rather only when a new data is available */
int32_t minDelay;
/* reserved fields, must be zero */
void* reserved[8];
};
/**
* Every device data structure must begin with hw_device_t
* followed by module specific public methods and attributes.
*/
struct sensors_poll_device_t {
struct hw_device_t common;
/** Activate/deactivate one sensor.
*
* @param handle is the handle of the sensor to change.
* @param enabled set to 1 to enable, or 0 to disable the sensor.
*
* @return 0 on success, negative errno code otherwise
*/
int (*activate)(struct sensors_poll_device_t *dev,
int handle, int enabled);
/**
* Set the delay between sensor events in nanoseconds for a given sensor.
*
* If the requested value is less than sensor_t::minDelay, then it's
* silently clamped to sensor_t::minDelay unless sensor_t::minDelay is
* 0, in which case it is clamped to >= 1ms.
*
* @return 0 if successful, < 0 on error
*/
int (*setDelay)(struct sensors_poll_device_t *dev,
int handle, int64_t ns);
/**
* Returns an array of sensor data.
* This function must block until events are available.
*
* @return the number of events read on success, or -errno in case of an error.
* This function should never return 0 (no event).
*
*/
int (*poll)(struct sensors_poll_device_t *dev,
sensors_event_t* data, int count);
};
/** convenience API for opening and closing a device */
static inline int sensors_open(const struct hw_module_t* module,
struct sensors_poll_device_t** device) {
return module->methods->open(module,
SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
}
static inline int sensors_close(struct sensors_poll_device_t* device) {
return device->common.close(&device->common);
}
__END_DECLS
主要包括sensors_vec_t、sensors_event_t、sensors_module_t、sensor_t、sensors_poll_device_t几个结构
sensors_vec_t主要是上传的数据,里面包括一个union结构,包含各种上传数据的一个数据封装,都是三个float
sensors_event_t主要是以一个事件的形式上传从sensor获取的数据,里面也有一个union,包含的是各种各样的传感器的数据,其中type是sensor的类型,sensor是一个标识
sensors_module_t是hw_module_t的一个封装,提供一个get_sensors_list获取该平台可提供的所有sensor
sensor_t用来描述一个sensor
sensors_poll_device_t是hw_device_t的一个封装。提供了3个方法activate、setDelay、poll
activate用来启动和停止sensor
setDelay用来设置延时
poll用来监听sensor上是否有数据
本文深入解析了传感器模块的HAL层头文件,详细介绍了sensors_vec_t、sensors_event_t、sensors_module_t、sensor_t、sensors_poll_device_t等关键结构,以及它们在传感器数据传输和设备交互中的作用。
8667

被折叠的 条评论
为什么被折叠?



