来自:http://www.liaoxuefeng.com/
类和实例
面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可能不同。
仍以Student类为例,在Python中,定义类是通过class关键字:
class Student(object):
pass
class后面紧接着是类名,即Student,类名通常是大写开头的单词,紧接着是(object),表示该类是从哪个类继承下来的,继承的概念我们后面再讲,通常,如果没有合适的继承类,就使用object类,这是所有类最终都会继承的类。
定义好了Student类,就可以根据Student类创建出Student的实例,创建实例是通过类名+()实现的:
>>> bart = Student()
>>> bart
<__main__.Student object at 0x10a67a590>
>>> Student
<class '__main__.Student'>
可以看到,变量bart指向的就是一个Student的object,后面的0x10a67a590是内存地址,每个object的地址都不一样,而Student本身则是一个类。
可以自由地给一个实例变量绑定属性,比如,给实例bart绑定一个name属性:
>>> bart.name = 'Bart Simpson'
>>> bart.name
'Bart Simpson'
由于类可以起到模板的作用,因此,可以在创建实例的时候,把一些我们认为必须绑定的属性强制填写进去。通过定义一个特殊的__init__方法,在创建实例的时候,就把name,score等属性绑上去:
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
注意到__init__方法的第一个参数永远是self,表示创建的实例本身,因此,在__init__方法内部,就可以把各种属性绑定到self,因为self就指向创建的实例本身。
有了__init__方法,在创建实例的时候,就不能传入空的参数了,必须传入与__init__方法匹配的参数,但self不需要传
__
,在Python中,实例的变量名如果以
__
开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问
class Student(object):
def __init__(self, name, score):
self.__name = name
self.__score = score
def print_score(self):
print '%s: %s' % (self.__name, self.__score)
使用type()
首先,我们来判断对象类型,使用type()函数:
基本类型都可以用type()判断:
>>> type(123)
<type 'int'>
>>> type('str')
<type 'str'>
>>> type(None)
<type 'NoneType'>
Python把每种type类型都定义好了常量,放在types模块里,使用之前,需要先导入:
>>> import types
>>> type('abc')==types.StringType
True
>>> type(u'abc')==types.UnicodeType
True
>>> type([])==types.ListType
True
>>> type(str)==types.TypeType
True
最后注意到有一种类型就叫TypeType,所有类型本身的类型就是TypeType,比如:
>>> type(int)==type(str)==types.TypeType
True
使用isinstance()
对于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数。
我们回顾上次的例子,如果继承关系是:
object -> Animal -> Dog -> Husky
那么,isinstance()就可以告诉我们,一个对象是否是某种类型。先创建3种类型的对象:
>>> a = Animal()
>>> d = Dog()
>>> h = Husky()
然后,判断:
>>> isinstance(h, Husky)
True
没有问题,因为h变量指向的就是Husky对象。
再判断:
>>> isinstance(h, Dog)
True
h虽然自身是Husky类型,但由于Husky是从Dog继承下来的,所以,h也还是Dog类型。换句话说,isinstance()判断的是一个对象是否是该类型本身,或者位于该类型的父继承链上。
使用dir()
如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:
>>> dir('ABC')
['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__getslice__', '__gt__', '__hash__', '__init__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '_formatter_field_name_split', '_formatter_parser', 'capitalize', 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']
类似__xxx__的属性和方法在Python中都是有特殊用途的,比如__len__方法返回长度。在Python中,如果你调用len()函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的__len__()方法
我们自己写的类,如果也想用len(myObj)的话,就自己写一个__len__()方法:
>>> class MyObject(object):
... def __len__(self):
... return 100
...
>>> obj = MyObject()
>>> len(obj)
100
仅仅把属性和方法列出来是不够的,配合getattr()、setattr()以及hasattr(),我们可以直接操作一个对象的状态:
>>> class MyObject(object):
... def __init__(self):
... self.x = 9
... def power(self):
... return self.x * self.x
...
>>> obj = MyObject()
紧接着,可以测试该对象的属性:
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19
如果试图获取不存在的属性,会抛出AttributeError的错误:
>>> getattr(obj, 'z') # 获取属性'z'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'MyObject' object has no attribute 'z'
可以传入一个default参数,如果属性不存在,就返回默认值:
>>> getattr(obj, 'z', 404) # 获取属性'z',如果不存在,返回默认值404
404
也可以获得对象的方法:
>>> hasattr(obj, 'power') # 有属性'power'吗?
True
>>> getattr(obj, 'power') # 获取属性'power'
<bound method MyObject.power of <__main__.MyObject object at 0x108ca35d0>>
>>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn
>>> fn # fn指向obj.power
<bound method MyObject.power of <__main__.MyObject object at 0x108ca35d0>>
>>> fn() # 调用fn()与调用obj.power()是一样的
81
使用__slots__
正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。先定义class:
>>> class Student(object):
... pass
...
然后,尝试给实例绑定一个属性:
>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print s.name
Michael
还可以尝试给实例绑定一个方法:
>>> def set_age(self, age): # 定义一个函数作为实例方法
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s, Student) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25
但是,给一个实例绑定的方法,对另一个实例是不起作用的:
>>> s2 = Student() # 创建新的实例
>>> s2.set_age(25) # 尝试调用方法
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'set_age'
为了给所有实例都绑定方法,可以给class绑定方法:
>>> def set_score(self, score):
... self.score = score
...
>>> Student.set_score = MethodType(set_score, None, Student)
给class绑定方法后,所有实例均可调用:
>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99
通常情况下,上面的set_score方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。
使用__slots__
但是,如果我们想要限制class的属性怎么办?比如,只允许对Student实例添加name和age属性。
为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class能添加的属性:
>>> class Student(object):
... __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
...
然后,我们试试:
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'
由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。
使用__slots__要注意,__slots__定义的属性仅对当前类起作用,对继承的子类是不起作用的:
>>> class GraduateStudent(Student):
... pass
...
>>> g = GraduateStudent()
>>> g.score = 9999
除非在子类中也定义__slots__,这样,子类允许定义的属性就是自身的__slots__加上父类的__slots__。
使用@property
在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:
s = Student()
s.score = 9999
这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数:
class Student(object):
def get_score(self):
return self._score
def set_score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:
>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。
有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!
还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:
class Student(object):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:
>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。
还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:
class Student(object):
@property
def birth(self):
return self._birth
@birth.setter
def birth(self, value):
self._birth = value
@property
def age(self):
return 2014 - self._birth
上面的birth是可读写属性,而age就是一个只读属性,因为age可以根据birth和当前时间计算出来。
多重继承
Mixin
在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为Mixin。
class Dog(Mammal, RunnableMixin, CarnivorousMixin):
pass
Mixin的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个Mixin的功能,而不是设计多层次的复杂的继承关系。
定制类
Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。
__str__
我们先定义一个Student类,打印一个实例:
>>> class Student(object):
... def __init__(self, name):
... self.name = name
...
>>> print Student('Michael')
<__main__.Student object at 0x109afb190>
打印出一堆<__main__.Student object at 0x109afb190>,不好看。
怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了:
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print Student('Michael')
Student object (name: Michael)
__iter__
如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的next()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。
我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b
def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己
def next(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration();
return self.a # 返回下一个值
现在,试试把Fib实例作用于for循环:
>>> for n in Fib():
... print n
...
1
1
2
3
5
...
46368
75025
__getitem__
Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:
>>> Fib()[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing
要表现得像list那样按照下标取出元素,需要实现__getitem__()方法:
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
现在,就可以按下标访问数列的任意一项了:
>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[2]
2
>>> f[3]
3
>>> f[10]
89
>>> f[100]
573147844013817084101
但是list有个神奇的切片方法:
>>> range(100)[5:10]
[5, 6, 7, 8, 9]
对于Fib却报错。原因是__getitem__()传入的参数可能是一个int,也可能是一个切片对象slice,所以要做判断:
class Fib(object):
def __getitem__(self, n):
if isinstance(n, int):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
if isinstance(n, slice):
start = n.start
stop = n.stop
a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L
现在试试Fib的切片:
>>> f = Fib()
>>> f[0:5]
[1, 1, 2, 3, 5]
>>> f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
但是没有对step参数作处理:
>>> f[:10:2]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
也没有对负数作处理,所以,要正确实现一个__getitem__()还是有很多工作要做的。
此外,如果把对象看成dict,__getitem__()的参数也可能是一个可以作key的object,例如str。
与之对应的是__setitem__()方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()方法,用于删除某个元素。
总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。
__getattr__
正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义Student类:
class Student(object):
def __init__(self):
self.name = 'Michael'
调用name属性,没问题,但是,调用不存在的score属性,就有问题了:
>>> s = Student()
>>> print s.name
Michael
>>> print s.score
Traceback (most recent call last):
...
AttributeError: 'Student' object has no attribute 'score'
错误信息很清楚地告诉我们,没有找到score这个attribute。
要避免这个错误,除了可以加上一个score属性外,Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。修改如下:
class Student(object):
def __init__(self):
self.name = 'Michael'
def __getattr__(self, attr):
if attr=='score':
return 99
当调用不存在的属性时,比如score,Python解释器会试图调用__getattr__(self, 'score')来尝试获得属性,这样,我们就有机会返回score的值:
>>> s = Student()
>>> s.name
'Michael'
>>> s.score
99
返回函数也是完全可以的:
class Student(object):
def __getattr__(self, attr):
if attr=='age':
return lambda: 25
只是调用方式要变为:
>>> s.age()
25
注意,只有在没有找到属性的情况下,才调用__getattr__,已有的属性,比如name,不会在__getattr__中查找。
此外,注意到任意调用如s.abc都会返回None,这是因为我们定义的__getattr__默认返回就是None。要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError的错误:
class Student(object):
def __getattr__(self, attr):
if attr=='age':
return lambda: 25
raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)
这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。
这种完全动态调用的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。
举个例子:
现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:
http://api.server/user/friends
http://api.server/user/timeline/list
如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。
利用完全动态的__getattr__,我们可以写出一个链式调用:
class Chain(object):
def __init__(self, path=''):
self._path = path
def __getattr__(self, path):
return Chain('%s/%s' % (self._path, path))
def __str__(self):
return self._path
试试:
>>> Chain().status.user.timeline.list
'/status/user/timeline/list'
这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用,而且,不随API的增加而改变!
还有些REST API会把参数放到URL中,比如GitHub的API:
GET /users/:user/repos
调用时,需要把:user替换为实际用户名。如果我们能写出这样的链式调用:
Chain().users('michael').repos
就可以非常方便地调用API了。有兴趣的童鞋可以试试写出来。
__call__
任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。请看示例:
class Student(object):
def __init__(self, name):
self.name = name
def __call__(self):
print('My name is %s.' % self.name)
调用方式如下:
>>> s = Student('Michael')
>>> s()
My name is Michael.
__call__()还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。
使用元类
type()
动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。
比方说我们要定义一个Hello的class,就写一个hello.py模块:
class Hello(object):
def hello(self, name='world'):
print('Hello, %s.' % name)
当Python解释器载入hello模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个Hello的class对象,测试如下:
>>> from hello import Hello
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<type 'type'>
>>> print(type(h))
<class 'hello.Hello'>
type()函数可以查看一个类型或变量的类型,Hello是一个class,它的类型就是type,而h是一个实例,它的类型就是class Hello。
我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()函数。
type()函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()函数创建出Hello类,而无需通过class Hello(object)...的定义:
>>> def fn(self, name='world'): # 先定义函数
... print('Hello, %s.' % name)
...
>>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<type 'type'>
>>> print(type(h))
<class '__main__.Hello'>
要创建一个class对象,type()函数依次传入3个参数:
- class的名称;
- 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
- class的方法名称与函数绑定,这里我们把函数
fn绑定到方法名hello上。
通过type()函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()函数创建出class。
正常情况下,我们都用class Xxx...来定义类,但是,type()函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。
metaclass
除了使用type()动态创建类以外,要控制类的创建行为,还可以使用metaclass。
metaclass,直译为元类,简单的解释就是:
当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。
但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。
连接起来就是:先定义metaclass,就可以创建类,最后创建实例。
所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。
metaclass是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况,所以,以下内容看不懂也没关系,因为基本上你不会用到。
我们先看一个简单的例子,这个metaclass可以给我们自定义的MyList增加一个add方法:
定义ListMetaclass,按照默认习惯,metaclass的类名总是以Metaclass结尾,以便清楚地表示这是一个metaclass:
# metaclass是创建类,所以必须从`type`类型派生:
class ListMetaclass(type):
def __new__(cls, name, bases, attrs):
attrs['add'] = lambda self, value: self.append(value)
return type.__new__(cls, name, bases, attrs)
class MyList(list):
__metaclass__ = ListMetaclass # 指示使用ListMetaclass来定制类
当我们写下__metaclass__ = ListMetaclass语句时,魔术就生效了,它指示Python解释器在创建MyList时,要通过ListMetaclass.__new__()来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。
__new__()方法接收到的参数依次是:
-
当前准备创建的类的对象;
-
类的名字;
-
类继承的父类集合;
-
类的方法集合。
测试一下MyList是否可以调用add()方法:
>>> L = MyList()
>>> L.add(1)
>>> L
[1]
而普通的list没有add()方法:
>>> l = list()
>>> l.add(1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'add'
动态修改有什么意义?直接在MyList定义中写上add()方法不是更简单吗?正常情况下,确实应该直接写,通过metaclass修改纯属变态。
但是,总会遇到需要通过metaclass修改类定义的。ORM就是一个典型的例子。
ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。
要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。
让我们来尝试编写一个ORM框架。
编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User类来操作对应的数据库表User,我们期待他写出这样的代码:
class User(Model):
# 定义类的属性到列的映射:
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password')
# 创建一个实例:
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
# 保存到数据库:
u.save()
其中,父类Model和属性类型StringField、IntegerField是由ORM框架提供的,剩下的魔术方法比如save()全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。
现在,我们就按上面的接口来实现该ORM。
首先来定义Field类,它负责保存数据库表的字段名和字段类型:
class Field(object):
def __init__(self, name, column_type):
self.name = name
self.column_type = column_type
def __str__(self):
return '<%s:%s>' % (self.__class__.__name__, self.name)
在Field的基础上,进一步定义各种类型的Field,比如StringField,IntegerField等等:
class StringField(Field):
def __init__(self, name):
super(StringField, self).__init__(name, 'varchar(100)')
class IntegerField(Field):
def __init__(self, name):
super(IntegerField, self).__init__(name, 'bigint')
下一步,就是编写最复杂的ModelMetaclass了:
class ModelMetaclass(type):
def __new__(cls, name, bases, attrs):
if name=='Model':
return type.__new__(cls, name, bases, attrs)
mappings = dict()
for k, v in attrs.iteritems():
if isinstance(v, Field):
print('Found mapping: %s==>%s' % (k, v))
mappings[k] = v
for k in mappings.iterkeys():
attrs.pop(k)
attrs['__table__'] = name # 假设表名和类名一致
attrs['__mappings__'] = mappings # 保存属性和列的映射关系
return type.__new__(cls, name, bases, attrs)
以及基类Model:
class Model(dict):
__metaclass__ = ModelMetaclass
def __init__(self, **kw):
super(Model, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Model' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
def save(self):
fields = []
params = []
args = []
for k, v in self.__mappings__.iteritems():
fields.append(v.name)
params.append('?')
args.append(getattr(self, k, None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args))
当用户定义一个class User(Model)时,Python解释器首先在当前类User的定义中查找__metaclass__,如果没有找到,就继续在父类Model中查找__metaclass__,找到了,就使用Model中定义的__metaclass__的ModelMetaclass来创建User类,也就是说,metaclass可以隐式地继承到子类,但子类自己却感觉不到。
在ModelMetaclass中,一共做了几件事情:
-
排除掉对
Model类的修改; -
在当前类(比如
User)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误; -
把表名保存到
__table__中,这里简化为表名默认为类名。
在Model类中,就可以定义各种操作数据库的方法,比如save(),delete(),find(),update等等。
我们实现了save()方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT语句。
编写代码试试:
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
u.save()
输出如下:
Found model: User
Found mapping: email ==> <StringField:email>
Found mapping: password ==> <StringField:password>
Found mapping: id ==> <IntegerField:uid>
Found mapping: name ==> <StringField:username>
SQL: insert into User (password,email,username,uid) values (?,?,?,?)
ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]
可以看到,save()方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。
不到100行代码,我们就通过metaclass实现了一个精简的ORM框架,完整的代码从这里下载:
https://github.com/michaelliao/learn-python/blob/master/metaclass/simple_orm.py
最后解释一下类属性和实例属性。直接在class中定义的是类属性:
class Student(object):
name = 'Student'
实例属性必须通过实例来绑定,比如self.name = 'xxx'。来测试一下:
>>> # 创建实例s:
>>> s = Student()
>>> # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性:
>>> print(s.name)
Student
>>> # 这和调用Student.name是一样的:
>>> print(Student.name)
Student
>>> # 给实例绑定name属性:
>>> s.name = 'Michael'
>>> # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性:
>>> print(s.name)
Michael
>>> # 但是类属性并未消失,用Student.name仍然可以访问:
>>> print(Student.name)
Student
>>> # 如果删除实例的name属性:
>>> del s.name
>>> # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了:
>>> print(s.name)
Student
因此,在编写程序的时候,千万不要把实例属性和类属性使用相同的名字。
在我们编写的ORM中,ModelMetaclass会删除掉User类的所有类属性,目的就是避免造成混淆。
本文深入探讨了面向对象编程的核心概念,包括类和实例、属性、方法、继承、多态性、鸭子类型和动态语言特性。通过具体示例展示了如何在Python中实现类的定制、动态属性操作和元类的使用,旨在帮助开发者更好地理解和应用面向对象编程原理。
4307

被折叠的 条评论
为什么被折叠?



