【基础dp】Max Sum Plus Plus

本文介绍了一道名为 MaxSumPlusPlus 的算法题目,通过动态规划方法求解给定序列中 m 对子序列的最大和。利用滚动数组优化内存使用,避免超时与超内存问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20745    Accepted Submission(s): 6900


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
 

Author
JGShining(极光炫影)
 


用正常的方法写会超内存超时间,所以此处用滚动数组;

进行m次操作,所以最外层循环为m次;

dp[i][j]表示处理到第i点,分成cnt组的总和,j表示滚动数组中的哪一个。



#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;



int n,m;
int a[1000007];
int dp[1000007][2];

int main()
{
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);

        int t1=0,t2=1;
        memset(dp,0,sizeof dp);

        for(int i=1;i<=m;i++)
        {
            dp[i][t2]=(dp[i-1][t1])+a[i];

            int ma=dp[i-1][t1];

            for(int j=i+1;j<=n;j++)
            {
                ma=max(ma,dp[j-1][t1]);
                dp[j][t2]=max(dp[j-1][t2],ma)+a[j];

            }
            swap(t1,t2);

        }

        int ans=-99999999;
        for(int i=m;i<=n;i++)
        {
            ans=max(ans,dp[i][t1]);
        }
        printf("%d\n",ans);

    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值