37、工业4.0中的计算优化方法:基于进化的算法与应用

工业4.0中的计算优化方法:基于进化的算法与应用

1. 引言

工业4.0的概念与信息技术进步融入制造技术和系统密切相关。这一革命旨在实现更高水平的自动化和数字化,从而整体提升流程、服务和产品的质量。物联网(IoT)、云计算和大数据分析等技术已经被广泛应用于此目的。然而,从自动化制造向智能制造的转变尤为重要。在先进制造中,智能是未来发展和进步的关键要素。通过引入与软计算或计算方法相关的算法和方法,可以实现上述转变,用于工业实践中的优化。这些方法能够提供快速的仿真模型或高效解决与工业相关的难题。特别是在硬工程问题的情况下,可以采用一种快速收敛的优化方法作为决策系统的一部分,该系统将实时接收来自工业环境中物理过程的信息,并提供可靠的结果。

2. 基于进化的算法概述

2.1 遗传算法

遗传算法(GA)是一种受自然选择过程和通过基因遗传特征启发的计算方法。该方法由霍兰德(Holland)提出,属于进化算法大家族的一部分。GA通过模仿进化过程的功能,对候选解进行优化。具体来说,遗传算法将候选解视为染色体,这些染色体由一系列基因组成。最初,创建一组随机生成的候选解,构成种群的第一代。这些初始候选解通常覆盖了搜索空间的广阔区域。每个候选解根据目标函数进行评估,然后通过交叉和变异等遗传操作生成新一代个体,直到算法终止。目的是确定高适应性的个体,并最终将它们的优良基因遗传给下一代,以产生潜在更好的个体。

2.2 遗传算法的基本概念和术语

遗传算法将候选解视为染色体,这些染色体由一系列基因组成。最初,创建一组随机生成的候选解,构成种群的第一代。每个候选解根据目标函数进行评估,然后通过交叉和变异等遗传操作生成新一代个体。染色体可以以

根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理和总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),和各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续性的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)和任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
本系统采用微信小程序作为前端交互界面,结合Spring BootVue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性可维护性,遵循企业级开发标准,确保了系统的长期稳定运行后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值