BZOJ2632 [neerc2011]Gcd guessing game

本文介绍了一种将一定范围内的素数进行分组的算法,目的是寻找最优分组方案,使得每组内素数的乘积不超过指定上限,进而解决特定问题。通过贪心策略,先将最大的素数放入一组,再按顺序加入尽可能多的小素数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述有些问题,只要你心里知道那个数就行了

如果我们猜一个数,他告诉我们gcd不是1,那么相当于把n和你猜的数都除以gcd,他告诉你gcd是1。所以每次都告诉你是1是最坏的情况,这样当n以内的所有素数都作为询问的数的因数出现过,并且他告诉你gcd是1,从而n以内所有素数都被否认是答案的因数之后,我们就能确定答案是1

问题变成了我们要给n以内的素数分组,使得每组的乘积小于等于n,问最小组数

贪心,每次把当前最大的素数加入,然后从当前最小素数的开始加入直到不能再加

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<ctime>
#include<vector>
#include<stack>
#include<set>
#include<bitset>
#include<map>
#include<queue>
using namespace std;
#define MAXN 200010
#define MAXM 10010
#define MOD 1000000007
#define INF 1000000000
#define eps 1e-8
#define ll long long 
int p[MAXM],tot;
bool np[MAXM];
int n;
void su(){
	int i,j;
	for(i=2;i<=n;i++){
		if(!np[i]){
			p[++tot]=i;
		}
		for(j=1;j<=tot&&p[j]*i<MAXM;j++){
			np[p[j]*i]=1;
			if(!(i%p[j])){
				break;
			}
		}
	}
}
int main(){
	int i,x,y,z;
	scanf("%d",&n);
	su();
	int ans=0;
	int wzh=1;
	for(i=tot;i>=wzh;i--){
		int now=p[i];
		while(now*p[wzh]<=n){
			now*=p[wzh++];
		}
		ans++;
	}
	printf("%d\n",ans);
	return 0;
}

/*

*/


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值