BZOJ4556 [Tjoi2016&Heoi2016]字符串

博客探讨了如何求解字符串s[a~b]与S[c~d]的最长公共前后缀(LCP),通过转化问题,利用后缀数组和二分查找在后缀树上进行优化,实现O(m log^2 n)的复杂度解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

恩,我们进行一些瞎YY,首先询问s[a~b]的所有子串与S[c~d]的最长LCP其实相当于询问s[a~b]的所有后缀与s[c~d]的最长LCP与这个子串的长度还有c~d的长度取min

进一步转化设suf[i]表示S的从第i个字符开始的后缀,则其实相当于询问这个

可以把d-c+1提到外面,就变成

这样只需要考虑左面的,考虑若答案为l(l<=d-c+1),则作为答案的后缀不可能取在i>b-l+1的位置,而在a<=i<=b-l+1的范围内,只要LCP(suf[i],suf[c])>=l,那么s[i~b]就是一个与s[c~d]有长度为l的LCP的子串

这样我们可以在<=d-c+1的范围内二分答案,每次只要判断a<=i<=b-mid+1的范围内是否存在LCP(suf[i],suf[c])>=mid即可,这个判断可以先建一颗后缀树,在后缀树上倍增找到suf[c]的最浅的长度>=mid的祖先,然后判断这个祖先的子树内是否有a<=i<=b-mid+1的后缀即可,这个可以用主席树

复杂度 O(m log^2 n)

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
using namespace std;
#define MAXN 200010
#define MAXM 4000010
#define ll long long
#define INF 1000000000
#define MOD 1000000007
#define eps 1e-8
struct vec{
	int to;
	int fro;
};
int fa[MAXN],son[MAXN][26],mx[MAXN];
int rt,lst,tot;
int n,m;
char s[MAXN];
int Son[MAXM][2],Siz[MAXM];
int Tot;
int Rt[MAXN];
vec mp[MAXN];
int tai[MAXN],cnt;
int dfn[MAXN],ndf[MAXN],siz[MAXN],tim;
int Fa[MAXN][20];
int dep[MAXN];
int P[MAXN];
vector<int>tp[MAXN];
inline void be(int x,int y){
	mp[++cnt].to=y;
	mp[cnt].fro=tai[x];
	tai[x]=cnt;
}
void ins(int x){
	int np=++tot,p=lst;
	mx[np]=mx[p]+1;
	while(p&&!son[p][x]){
		son[p][x]=np;
		p=fa[p];
	}
	if(!p){
		fa[np]=rt;
	}else{
		int q=son[p][x];
		if(mx[q]==mx[p]+1){
			fa[np]=q;
		}else{
			int nq=++tot;
			mx[nq]=mx[p]+1;
			memcpy(son[nq],son[q],sizeof(son[q]));
			fa[nq]=fa[q];
			fa[np]=fa[q]=nq;
			while(p&&son[p][x]==q){
				son[p][x]=nq;
				p=fa[p];
			}
		}
	}
	lst=np;
}
void dfs(int x){
	int i,j,t,y;
	dfn[x]=++tim;
	ndf[tim]=x;
	siz[x]=1;
	dep[x]=dep[Fa[x][1]]+1;
	for(i=tai[x];i;i=mp[i].fro){
		y=mp[i].to;
		for(t=x,j=1;t;j++){
			Fa[y][j]=t;
			t=Fa[t][j];
		}
		dfs(y);
		siz[x]+=siz[y];
	}
}
void change(int &x,int xx,int l,int r,int p){
	x=++Tot;
	memcpy(Son[x],Son[xx],sizeof(Son[x]));
	Siz[x]=Siz[xx]+1;
	if(l==r){
		return ;
	}
	int mid=l+r>>1;
	if(p<=mid){
		change(Son[x][0],Son[xx][0],l,mid,p);
	}else{
		change(Son[x][1],Son[xx][1],mid+1,r,p);
	}
}
int anc(int x,int y){
	int i;
	for(i=19;i;i--){
		if(mx[Fa[x][i]]>=y){
			x=Fa[x][i];
		}
	}
	return x;
}
int ask(int x,int xx,int y,int z,int l,int r){
	if(y==l&&z==r){
		return Siz[xx]-Siz[x];
	}
	int mid=y+z>>1;
	if(r<=mid){
		return ask(Son[x][0],Son[xx][0],y,mid,l,r);
	}else if(l>mid){
		return ask(Son[x][1],Son[xx][1],mid+1,z,l,r);
	}else{
		return ask(Son[x][0],Son[xx][0],y,mid,l,mid)+ask(Son[x][1],Son[xx][1],mid+1,z,mid+1,r);
	}
}
bool OK(int x,int y,int z){
	return ask(Rt[dfn[x]-1],Rt[dfn[x]+siz[x]-1],1,n,y,z);
}
int main(){
	lst=rt=tot=1;
	int i,j,x,y,xx,yy;
	scanf("%d%d",&n,&m);
	scanf("%s",s+1);
	int p=rt;
	for(i=n;i;i--){
		ins(s[i]-'a');
		p=son[p][s[i]-'a'];
		P[i]=p;
		tp[P[i]].push_back(i);
	}
	for(i=2;i<=tot;i++){
		be(fa[i],i);
	}
	dfs(1);
	for(i=1;i<=tim;i++){
		Rt[i]=Rt[i-1];
		for(j=0;j<tp[ndf[i]].size();j++){
			change(Rt[i],Rt[i],1,n,tp[ndf[i]][j]);
		}
	}
	while(m--){
		scanf("%d%d%d%d",&x,&y,&xx,&yy);
		int l=1,r=min(yy-xx+1,y-x+1);
		int ans=0;
		while(l<=r){
			int mid=l+r>>1;
			if(OK(anc(P[xx],mid),x,y-mid+1)){
				ans=mid;
				l=mid+1;
			}else{
				r=mid-1;
			}
		}
		printf("%d\n",ans);
	}
	return 0;
}

/*
8 1
ababcabc
1 3 6 8
*/


### BZOJ1461 字符串匹配 题解 针对BZOJ1461字符串匹配问题,解决方法涉及到了KMP算法以及树状数组的应用。对于此类问题,朴素的算法无法满足时间效率的要求,因为其复杂度可能高达O(ML²),其中M代表模式串的数量,L为平均长度[^2]。 为了提高效率,在这个问题中采用了更先进的技术组合——即利用KMP算法来预处理模式串,并通过构建失配树(也称为失败指针),使得可以在主串上高效地滑动窗口并检测多个模式串的存在情况。具体来说: - **前缀函数与KMP准备阶段**:先对每一个给定的模式串执行一次KMP算法中的pre_kmp操作,得到各个模式串对应的next数组。 - **建立失配树结构**:基于所有模式串共同构成的一棵Trie树基础上进一步扩展成带有失配链接指向的AC自动机形式;当遇到某个节点不存在对应字符转移路径时,则沿用该处失配链路直至找到合适的目标或者回到根部重新开始尝试其他分支。 - **查询过程**:遍历整个待查文本序列的同时维护当前状态处于哪一层级下的哪个子结点之中,每当成功匹配到完整的单词就更新计数值至相应位置上的f_i变量里去记录下这一事实。 下面是简化版Python代码片段用于说明上述逻辑框架: ```python from collections import defaultdict def build_ac_automaton(patterns): trie = {} fail = [None]*len(patterns) # 构建 Trie 树 for i,pattern in enumerate(patterns): node = trie for char in pattern: if char not in node: node[char]={} node=node[char] node['#']=i queue=[trie] while queue: current=queue.pop() for key,value in list(current.items()): if isinstance(value,int):continue if key=='#': continue parent=current[key] p=fail[current is trie and 0 or id(current)] while True: next_p=p and p.get(key,None) if next_p:break elif p==0: value['fail']=trie break else:p=fail[id(p)] if 'fail'not in value:value['fail']=next_p queue.append(parent) return trie,fail def solve(text, patterns): n=len(text) m=len(patterns) f=[defaultdict(int)for _in range(n)] ac_trie,_=build_ac_automaton(patterns) state=ac_trie for idx,char in enumerate(text+'$',start=-1): while True: trans=state.get(char,state.get('#',{}).get('fail')) if trans!=None: state=trans break elif '#'in state: state[state['#']['fail']] else: state=ac_trie cur_state=state while cur_state!={}and'#'in cur_state: matched_pattern_idx=cur_state['#'] f[idx][matched_pattern_idx]+=1 cur_state=cur_state['fail'] result=[] for i in range(len(f)-1): row=list(f[i].values()) if any(row): result.extend([sum((row[:j+1]))for j,x in enumerate(row[::-1])if x>0]) return sum(result) patterns=["ab","bc"] text="abc" print(solve(text,text)) #[^4] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值