Sum of Consecutive Prime Numbers
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 26102 | Accepted: 14170 |
Description
Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has
three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.
Your mission is to write a program that reports the number of representations for the given positive integer.
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.
Your mission is to write a program that reports the number of representations for the given positive integer.
Input
The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.
Output
The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted
in the output.
Sample Input
2 3 17 41 20 666 12 53 0
Sample Output
1 1 2 3 0 0 12
一道挺水的质数题,超时了两次,在计算素数和的时候不能再加一重循环,思路大概就是先把10000以内的素数存到一个数组,然后再从第一个数向后遍历,直到所得和与输入的数相等
#include<iostream> #include<string> #include<string.h> using namespace std; #include<algorithm> #include<math.h> int j=0; int sushu[1230]; bool su(int a) { for(int i=2;i<=sqrt(a+0.0);i++) { if(a%i==0) return false; } return true; } void su() { for(int i=2;i<10000;i++) { if(su(i)) { sushu[j]=i; j++; } } } int main() { memset(sushu,0,sizeof(sushu)); su(); int n; while(scanf("%d",&n)!=EOF,n) { int flag=0; for(int i=0;i<1229;i++) { int sum=0; for(int j=i;j<1229;j++) { sum+=sushu[j]; if(sum>n) break; else if(sum==n) { flag++; break; } } } cout<<flag<<endl; } return 0; }