codeforce 67D - Optical Experiment(dp)

本文探讨了光线实验中光线相交问题,教授如何通过输入光线进入和退出孔洞的位置信息,计算出最大的相交光线组的数量。通过实例解释并提供了解决方法。
部署运行你感兴趣的模型镜像

D - Optical Experiment
Time Limit:5000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

Professor Phunsuk Wangdu has performed some experiments on rays. The setup for n rays is as follows.

There is a rectangular box having exactly n holes on the opposite faces. All rays enter from the holes of the first side and exit from the holes of the other side of the box. Exactly one ray can enter or exit from each hole. The holes are in a straight line.

Professor Wangdu is showing his experiment to his students. He shows that there are cases, when all the rays are intersected by every other ray. A curious student asked the professor: "Sir, there are some groups of rays such that all rays in that group intersect every other ray in that group. Can we determine the number of rays in the largest of such groups?".

Professor Wangdu now is in trouble and knowing your intellect he asks you to help him.

Input

The first line contains n (1 ≤ n ≤ 106), the number of rays. The second line contains n distinct integers. The i-th integer xi (1 ≤ xi ≤ n) shows that the xi-th ray enters from the i-th hole. Similarly, third line contains n distinct integers. The i-th integer yi (1 ≤ yi ≤ n) shows that the yi-th ray exits from the i-th hole. All rays are numbered from 1 to n.

Output

Output contains the only integer which is the number of rays in the largest group of rays all of which intersect each other.

Sample Input

Input
5
1 4 5 2 3
3 4 2 1 5
Output
3
Input
3
3 1 2
2 3 1
Output
2

Hint

For the first test case, the figure is shown above. The output of the first test case is 3, since the rays number 1, 4 and 3 are the ones which are intersected by each other one i.e. 1 is intersected by 4 and 3, 3 is intersected by 4 and 1, and 4 is intersected by 1 and 3. Hence every ray in this group is intersected by each other one. There does not exist any group containing more than 3 rays satisfying the above-mentioned constraint.



#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
const int mm=1e6+9;
int p[mm],a[mm];
int main()
{ int x,n;
  while(scanf("%d",&n)!=EOF)
  { memset(p,0,sizeof(p));
    for(int i=0;i<n;++i)
    {
      scanf("%d",&x);p[x]=i+1;///x之前有几条线
    }
    for(int i=0;i<n;++i)
    {
      scanf("%d",&x);a[i]=-p[x];///用负就取反了
    }
    memset(p,0,sizeof(p));
    for(int i=0;i<n;++i)///其实如果不用负数,如果后一个比前一个小就一定和前一个相交
      *lower_bound(p,p+n,a[i])=a[i];///找出两两相交的线并且更新
    printf("%d\n",lower_bound(p,p+n,0)-p);
  }
}


您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

内容概要:本文档介绍了基于3D FDTD(时域有限差分)方法在MATLAB平台上对微带线馈电的矩形天线进行仿真分析的技术方案,重点在于模拟超MATLAB基于3D FDTD的微带线馈矩形天线分析[用于模拟超宽带脉冲通过线馈矩形天线的传播,以计算微带结构的回波损耗参数]宽带脉冲信号通过天线结构的传播过程,并计算微带结构的回波损耗参数(S11),以评估天线的匹配性能和辐射特性。该方法通过建立三维电磁场模型,精确求解麦克斯韦方程组,适用于高频电磁仿真,能够有效分析天线在宽频带内的响应特性。文档还提及该资源属于一个涵盖多个科研方向的综合性MATLAB仿真资源包,涉及通信、信号处理、电力系统、机器学习等多个领域。; 适合人群:具备电磁场与微波技术基础知识,熟悉MATLAB编程及数值仿真的高校研究生、科研人员及通信工程领域技术人员。; 使用场景及目标:① 掌握3D FDTD方法在天线仿真中的具体实现流程;② 分析微带天线的回波损耗特性,优化天线设计参数以提升宽带匹配性能;③ 学习复杂电磁问题的数值建模与仿真技巧,拓展在射频与无线通信领域的研究能力。; 阅读建议:建议读者结合电磁理论基础,仔细理解FDTD算法的离散化过程和边界条件设置,运行并调试提供的MATLAB代码,通过调整天线几何尺寸和材料参数观察回波损耗曲线的变化,从而深入掌握仿真原理与工程应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值