x = torch.randn((1, 4), dtype=torch.float32, requires_grad=True)
x
Out[54]: tensor([[ 0.1351, 0.8179, 0.1422, -0.3021]], requires_grad=True)
y = x ** 2
z = y * 4
output1 = z.mean()
output2 = z.sum()
output1.backward()
output2.backward()
Traceback (most recent call last):
File "C:\local\Anaconda3-4.1.1-Windows-x86_64\lib\site-packages\IPython\core\interactiveshell.py", line 2885, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-60-90eaf9dc15fc>", line 1, in <module>
output2.backward()
File "C:\local\Anaconda3-4.1.1-Windows-x86_64\lib\site-packages\torch\tensor.py", line 93, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "C:\local\Anaconda3-4.1.1-Windows-x86_64\lib\site-packages\torch\autograd\__init__.py", line 90, in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeErro
【PyTorch】retain_graph的作用
最新推荐文章于 2025-01-13 10:16:28 发布