Quotient Topology

本文介绍了商拓扑的基本概念,包括定义、性质及其构造方式。商拓扑是使映射成为连续映射的最细拓扑结构,并讨论了通过等价关系定义商空间的方法。此外,还探讨了商映射的特性以及空间粘合的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Quotient Topology

notations

top: topological space (structure)
hom: homomorphism on top

1. Definition

Quotient Space 1
Suppose X is a top, f:XY. Quotient topology of Y is {BY|f1[B]X} denoted as X/f. Under this topology Y is the quotient space of X.

Quotient topology is the finest top for Y that f is continous, meanwhile f is a quotient map. Remember f1[A]XAX/f

Quotient Space 2
Suppose X is a top, is an equivalent relation (or partition), let f(x)=[x] (equivalent class or component). Quotient space of X under is X/f={A|xA[x]} denoted as X/.
Remark
A partition π gives an equivalent relation xy iff x,yAπ. Define X/π=X/
Remark
if f is open, then f is a quotient map, not the other way. In topological group, the quotient map is indeed open.
Gluing space
AX, given a partition π={A,{x},{y},}, define gluing space X/A=X/π. Element {x} in X/A is denoted as x for convenience.
To glue two spaces
XY=, xX,yY, then X+x,yY=XY/{x,y}.

2. Basic Theorems

Theorem 1
If f:XY is a quotient map, then ϕ(y)=f1[y]:YX/f.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值