hdu_1086 You can Solve a Geometry Problem too(计算几何)

本文介绍了一个简单的计算几何问题,通过使用点和线的结构来判断线段是否相交,并给出了解决该问题的具体代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://acm.hdu.edu.cn/showproblem.php?pid=1086


分析:简单计算几何题,相交判断直接用模板即可。

           思路:将第k条直线与前面k-1条直线进行相交判断,因为题目中不排除多条直线相交于同一个点的重复情况。


代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h>
using namespace std;
const double eps = 1e-8;
const double PI = acos(-1.0);  //比直接写3.1415926精确

int sgn(double x)              //三态函数,精确度提高
{
        if(fabs(x) < eps)return 0;
        else return x<0? -1:1;
}

struct Point
{
        double x,y;
		Point(){}
        Point(double _x,double _y)  //带参构造函数
        {
                x = _x;y = _y;
        }
        Point operator -(const Point &b)const  //点相减
        {
                return Point(x - b.x,y - b.y);
        }
        double operator ^(const Point &b)const  //叉积(外积)
        {
                return x*b.y - y*b.x;
        }
        double operator *(const Point &b)const //点积
        {
                return x*b.x + y*b.y;
        }
        void transXY(double B)            //绕原点旋转角度B(弧度值),后x,y的变化
        {
                double tx = x,ty = y;        //
                x = tx*cos(B) - ty*sin(B);
                y = tx*sin(B) + ty*cos(B);
        }
};
struct Line
{
        Point s,e;
        Line(){}
        Line(Point _s,Point _e)
        {
                s = _s;e = _e;
        }
        //两直线相交求交点
        //第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
        //只有第一个值为2时,交点才有意义
    pair<int,Point> operator &(const Line &b)const
    {
        Point res = s;
        if(sgn((s-e)^(b.s-b.e)) == 0)
        {
            if(sgn((s-b.e)^(b.s-b.e)) == 0)
                return make_pair(0,res);//重合
            else return make_pair(1,res);//平行
        }
        double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
        res.x += (e.x-s.x)*t;
        res.y += (e.y-s.y)*t;
        return make_pair(2,res);
    }
};
Point ms,me;
Line  ml[120];

//*两点间距离
double dist(Point a,Point b)
{
    return sqrt((a-b)*(a-b));
}
//*判断线段相交
bool inter(Line l1,Line l2)
{
    return
    max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
    max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
    max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
    max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
    sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= 0 &&
    sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <= 0;
}

int main()
{
    int n;
    int ans;
    while(scanf("%d",&n),n){
        ans=0;
        for(int i=0;i<n;i++){
            scanf("%lf%lf%lf%lf",&ms.x,&ms.y,&me.x,&me.y);
            ml[i].s=ms; ml[i].e=me;
        }
        for(int i=1;i<n;i++)
        for(int j=0;j<i;j++){
            if(inter(ml[i],ml[j])) ans++;
        }
        printf("%d\n",ans);
    }
    return 0;
}


内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值