建立一个与词性标注问题相关联的HMM模型

本文介绍如何使用隐马尔可夫模型(HMM)进行词性标注,包括定义隐藏状态与观察符号,并根据训练语料库学习HMM参数。文章还探讨了已标注与未标注语料库的学习方法及利用维特比算法进行解码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何建立一个与词性标注问题相关联的HMM模型?

1.必须确定HMM模型中的隐藏状态和观察符号,也可以说成观察状态,由于我们是根据输入句子输出词性序列,因此可以将词性标记序列作为隐藏状态,而把句子中的单词作为观察符号,那么对于Brown语料库来说,就有87个隐藏状态(标记集)和将近4万多个观察符号(词型)

2。训练语料库的性质来学习HMM的各项参数

A. 如果训练语料已经做好了标注,那么学习这个HMM模型的问题就比较简单,只需要计数就可以完成HMM各个模型参数的统计,如标记间的状态转移概率可以通过如下公式求出:
        P(Ti|Tj) = C(Tj,Ti)/C(Tj)
  而每个状态(标记)随对应的符号(单词)的发射概率可由下式求出:
        P(Wm|Tj) = C(Wm,Tj)/C(Tj)

  其中符号C代表的是其括号内因子在语料库中的计数。

B.如果训练语料库没有标注,那么HMM的第三大基本问题“学习”就可以派上用处了,通过一些辅助资源,如词典等,利用前向-后向算法也可以学习一个HMM模型,不过这个模型比之有标注语料库训练出来的模型要差一些。

总之,我们已经训练了一个与语料库对应的HMM词性标注模型,那么如何利用这个模型来解决词性标注问题呢?当然是采用维特比算法解码了, HMM模型第二大基本问题就是专门来解决这个问题的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值