- 前言
以“线性回归”理解tensorflow api底层细节。分为两部分讲解。
1. 底层API
import tensorflow as tf
from tqdm import tqdm
#模型参数
W = tf.Variable([0.3],dtype=tf.float32)
b = tf.Variable([-0.3],dtype=tf.float32)
#模型输入和输出
x = tf.placeholder(tf.float32)
linear_model = W*x+b
y = tf.placeholder(tf.float32)
#损失函数及优化器
loss = tf.reduce_sum(tf.square(linear_model-y))
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
#训练数据
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in tqdm(range(1000)):
sess.run(train,{x:x_train, y:y_train})
#评估训练的正确率
curr_W, curr_b, curr_loss = sess.run([W, b, loss ], {x:x_train, y:y_train})
print("W: %s b: %s loss: %s"% (curr_W, curr_b, curr_loss))
- 高层API
import tensorflow as tf
import numpy as np
feature_columns = [tf.feature_column.numeric_column("x",shape=[1])]
estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns)
x_train = np.array([1,2,3,4])
y_train = np.array([0,-1,-2,-3])
x_eval = np.array([2,5,8,1])
y_eval = np.array([-1.01,-4.1,-7,0])
input_fn = tf.estimator.inputs.numpy_input_fn(
{"x":x_train},y_train,batch_size=4, num_epochs=None, shuffle=True)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
{"x":x_train},y_train,batch_size=4, num_epochs=1000, shuffle=False)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
{"x":x_eval},y_eval,batch_size=4, num_epochs=1000, shuffle=False)
estimator.train(input_fn=input_fn,steps = 1000)
train_metrics = estimator.evaluate(input_fn=train_input_fn)
eval_metrics = estimator.evaluate(input_fn=eval_input_fn)
print("train metrics: %r"% train_metrics)
print("eval metrics: %r"% eval_metrics)