android.os.BadParcelableException: ClassNotFoundException when unmarshalling

本文深入分析了Android中BadParcelableException异常出现的原因,并给出了具体的解决办法。同时介绍了Android系统的两种ClassLoaders及其工作原理。


本文主要分析android.os.BadParcelableException: ClassNotFoundException when unmarshalling这个异常的原因及解决方法,解释了android的class loader.

 

一、现象:
应用打开,home键到后台,过一段时间打开,偶现fc,log如下:

程序中的写法是

报错的语句即为config = in.readParcelable(null);

 

二、原因分析:
根据android文档介绍:
readParcelable (ClassLoader loader)
loader A ClassLoader from which to instantiate the Parcelable object, or null for the default class loader.
即loader为空时系统会采取默认的class loader。

 

Android有两种不同的classloaders:framework classloader和apk classloader,其中framework classloader知道怎么加载android classes,apk classloader知道怎么加载you code,apk classloader继承自framework classloader,所以也知道怎么加载android classes。

 

在应用刚启动时,默认class loader是apk classloader,但在系统内存不足应用被系统回收会再次启动,这个默认class loader会变为framework classloader了,所以对于自己的类会报ClassNotFoundException。

 

三、解决方法:
将config = in.readParcelable(null);改为config = in.readParcelable(Config.class.getClassLoader());
Config.class.getClassLoader()即为apk classloader, 其中Config.class可以改为你程序中自己写的任意类,因为他们同样指向apk loader
嘿嘿,试着改为config = in.readParcelable(Activity.class.getClassLoader());你会发现依然ClassNotFoundException因为Activity.class.getClassLoader()指向的是framework classloader

 

四、如何测试重现这个问题,方便测试呢:
重现这个问题即使的应用被系统回收,把设置->开发者选项->不保留活动开关打开,打开测试程序按home键,再打开测试程序就会执行到这句。

如果你是在onSaveInstanceState中保存
savedInstanceState.putParcelable(key, value),则需要设置Bundle的class loader,如下:
savedInstanceState.setClassLoader(getClass().getClassLoader());

 

PS:
(1)、readParcelableArray(ClassLoader loader), readParcelable, readArray,readArrayList, readBundle, readHashMap, readParcelable, readSparseArray, readValue, readList, readMap也有可能报上面的异常

 

相关博客:

关于Parcelable以及Parcelable和Serializable的区别的区别,可参考以前写的:http://www.cnblogs.com/trinea/archive/2012/11/09/2763213.html
参考:http://stackoverflow.com/questions/13997550/unmarshalling-errors-in-android-app-with-custom-parcelable-classes
http://developer.android.com/reference/android/os/Parcel.html#readParcelable(java.lang.ClassLoader

### Pandas 文件格式读写操作教程 #### 1. CSV文件的读取与保存 Pandas 提供了 `read_csv` 方法用于从 CSV 文件中加载数据到 DataFrame 中。同样,也可以使用 `to_csv` 将 DataFrame 数据保存为 CSV 文件。 以下是具体的代码示例: ```python import pandas as pd # 读取CSV文件 df = pd.read_csv('file.csv') # 加载本地CSV文件 [^1] # 保存DataFrame为CSV文件 df.to_csv('output.csv', index=False) # 不保存行索引 [^1] ``` --- #### 2. JSON文件的读取与保存 对于JSON格式的数据,Pandas 支持通过 `read_json` 和 `to_json` 进行读取和存储。无论是本地文件还是远程 URL 都支持。 具体实现如下所示: ```python # 读取本地JSON文件 df = pd.read_json('data.json') # 自动解析为DataFrame对象 [^3] # 从URL读取JSON数据 url = 'https://example.com/data.json' df_url = pd.read_json(url) # 直接从网络地址获取数据 # 保存DataFrame为JSON文件 df.to_json('output.json', orient='records') ``` --- #### 3. Excel文件的读取与保存 针对Excel文件操作Pandas 使用 `read_excel` 来读取 `.xls` 或 `.xlsx` 格式的文件,并提供 `to_excel` 方法导出数据至 Excel 表格。 注意:需要安装额外依赖库 `openpyxl` 或 `xlrd` 才能正常运行这些功能。 ```python # 安装必要模块 (如果尚未安装) !pip install openpyxl xlrd # 读取Excel文件 df_excel = pd.read_excel('file.xlsx', sheet_name='Sheet1') # 导出DataFrame为Excel文件 df.to_excel('output.xlsx', sheet_name='Sheet1', index=False) ``` --- #### 4. SQL数据库的交互 当涉及关系型数据库时,Pandas 可借助 SQLAlchemy 库连接各种类型的数据库(如 SQLite, MySQL)。它允许直接查询并将结果作为 DataFrame 返回;或者反过来把现有 DataFrame 插入到指定表中。 下面是基于SQLite的一个例子: ```python from sqlalchemy import create_engine # 创建引擎实例 engine = create_engine('sqlite:///database.db') # 查询SQL语句并返回DataFrame query = "SELECT name, salary, department FROM employees" sql_df = pd.read_sql(query, engine) # 计算各部门平均工资 avg_salary_by_dept = sql_df.groupby('department')['salary'].mean() # 将DataFrame存回SQL表 avg_salary_by_dept.to_sql(name='average_salaries_per_department', con=engine, if_exists='replace', index=True) ``` 上述片段说明了如何执行基本SQL命令以及后续数据分析流程[^4]。 --- #### 5. 多层次索引(MultiIndex)的应用场景 除了常规单维度索引外,在某些复杂情况下可能需要用到多级索引结构。这时可以依靠 MultiIndex 构建更加灵活的数据模型。 例如定义一个多层列名体系: ```python arrays = [['A','A','B','B'], ['foo','bar','foo','bar']] tuples = list(zip(*arrays)) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df_multi_indexed = pd.DataFrame([[0,1,2,3], [4,5,6,7]], columns=index) print(df_multi_indexed) ``` 这段脚本演示了怎样构建一个具有双重分类标签的表格布局[^2]。 --- ### 总结 综上所述,Pandas 是一种强大而易用的数据处理工具包,适用于多种常见文件类型之间的相互转换及其高级特性应用开发之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值