堆优化Dijkstra模版

本文深入讲解了Dijkstra算法的实现细节,包括初始化过程、节点结构定义、优先队列使用及核心迭代更新步骤,并提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

const int MAXN = 300005;
const __int64 INF = 0x7FFFFFFF;

typedef struct ENode
{
	int v,w;
	int next;
}ENode;

struct node
{
	int u;
	__int64 dis;
	bool operator < (const node &a) const
	{
		return dis > a.dis;
	}
};

bool vis[MAXN];
int n, m, first[MAXN];
__int64 dis[MAXN], ans;
ENode edge[MAXN];
priority_queue<node>Q; //node类型的优先队列

void dijkstra()
{
	for(int i = 1; i <= n; i++)
	{
		vis[i] = false;
		dist[i] = INF;  //初始最短路程
	}
	dis[1] = 0; 
	node pre, next;
	pre.u = 1;
	pre.dis = 0;
	Q.push(pre);
	while(!Q.empty())
	{
		pre = Q.top();
		Q.pop();
		if(vis[pre.u])//除去同时进几次的
		{
			continue;
		}
		vis[pre.u] = true;
		dis[pre.u] = pre.dis;
		for(int i = first[pre.u]; i != -1; i = edge[i].next)
		{
			next.u = edge[i].v;
			if(!vis[next.u] && dist[edge[i].v] > dist[pre.u] + edge[i].w)
			{
				next.dis = pre.dis + edge[i].w;
				Q.push(next);
			}
		}
	}
}



const int MAXN = 205;
const int INF = 999999;
int n;
int maps[MAXN][MAXN];
bool visited[MAXN];
int pre[MAXN];
int dist[MAXN];

void init()
{
	memset(visited, false, sizeof(visited));
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			if(i == j)
			{
				maps[i][j] = 0;
			}
			else
			{
				maps[i][j] = INF;
			}
		}
		pre[i] = i;
		dist[i] = INF;
	}
}

void Dijkstra(int s, int e) //起点,终点
{
	int i, j;
	int minValue, minNode;

	dist[s] = 0;
	visited[s] = true;
	for (i = 1; i <= n; i++)
	{
		dist[i] = maps[s][i];
		if(dist[i] == INF)
		{
			pre[i] = 0;
		}
		else
		{
			pre[i] = s;
		}
	}
	for (i = 1; i <= n; i++)
	{
		minValue = INF;
		minNode = 0;
		for (j = 1; j <= n; j++)
		{
			if(!visited[j] && minValue > dist[j])
			{
				minNode = j;
				minValue = dist[j];
			}
		}
		if(minNode == 0)
		{
			break;
		}
		visited[minNode] = true;
		for (j = 1; j <= n; j++)
		{
			if(!visited[j] && maps[minNode][j] != INF && dist[j] > dist[minNode] + maps[minNode][j])
			{
				dist[j] = dist[minNode] + maps[minNode][j];
				pre[j] = minNode;
			}
		}
		if(minNode == e)
		{
			break;
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值