poj_1157LITTLE SHOP OF FLOWERS

本文探讨了如何通过最优排列花卉与花瓶,实现花店布局的最大美学价值。通过数学建模与动态规划算法,解决花卉在有限花瓶中的有序放置问题,确保每朵花都能展示其最佳美感。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

LITTLE SHOP OF FLOWERS
Time Limit:1000MS Memory Limit:10000K
Total Submissions:15079 Accepted:6961

Description

You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

V A S E S

1

2

3

4

5

Bunches

1 (azaleas)

723-5-2416

2 (begonias)

521-41023

3 (carnations)

-21

5-4-2020

According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

Input

  • The first line contains two numbers:F,V.
  • The followingFlines: Each of these lines containsVintegers, so thatAijis given as thejthnumber on the (i+1)stline of the input file.


  • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
  • F <= V <= 100 where V is the number of vases.
  • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

Output

The first line will contain the sum of aesthetic values for your arrangement.

Sample Input

3 5
7 23 -5 -24 16
5 21 -4 10 23
-21 5 -4 -20 20

Sample Output

53

开始没注意全为负数的情况,wa

状态转移方程:

dp[i][j] = num[i][j] + max(dp[i-1][1],dp[i-1][2],...dp[i-1][j-1]);

我们用opt定义以当前I j为结尾的花的排序的最大值,用r*(-50)表示负无穷,初始化时第一行为origin[i][j],后面为r*(-50)

Opt[][]

1

2

3

4

5

1

7

23

-5

-24

16

2

-150

-150

-150

-150

-150

3

-150

-150

-150

-150

-150

从第二行开始,对于第i行第j列,对于i>=j,遍历i-1行前j列,求出当前最大值。

Opt[][]

1

2

3

4

5

1

7

23

-5

-24

16

2

-150

21+7

-4+max(7,23)

10+max(7,23,-24)

23+max(…)

3

-150

-150

-150

-150

-150

I=3:

Opt[][]

1

2

3

4

5

1

7

23

-5

-24

16

2

-150

28

19

33

46

3

-150

-150

-4+max(-150,28)

-20+max()

20+max(-150,28,19,33)


题解:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

int main()
{
	freopen("in.txt","r",stdin);
	int num[105][105];
	int dp[105][105];
	int n, m, i, j;
	cin >> n >> m;
	for(i = 1; i <= n; i++)
	{
		for(j = 1; j <= m; j++)
		{
			cin >> num[i][j];
		}
	}

	for(i = 1; i <= n; i++)
	{
		for(j = 1; j <= m; j++)
		{
			if(i == 1) dp[1][j] = num[1][j];
			else dp[i][j] = -50 * n;
		}
	}

	for(i = 2; i <= n; i++)
	{
		for(j = 1; j <=m; j++)
		{
			if(j >= i)
			{
				for(int k = 1; k < j; k++)
				{
					if(dp[i][j] < dp[i-1][k] + num[i][j])
						dp[i][j] = dp[i-1][k] + num[i][j];
				}
			}
		}
	}
	int ans = -999999;
	for(i = 1; i <= m; i++)
	{
		ans = max(ans, dp[n][i]);
	}
	cout << ans << endl;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值