题目:
Time Limit:1000MS | Memory Limit:10000K | |
Total Submissions:15079 | Accepted:6961 |
Description
Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
V A S E S | ||||||
1 |
2 |
3 |
4 |
5 | ||
Bunches |
1 (azaleas) | 7 | 23 | -5 | -24 | 16 |
2 (begonias) | 5 | 21 | -4 | 10 | 23 | |
3 (carnations) |
-21 | 5 | -4 | -20 | 20 |
According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.
To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.
Input
- The first line contains two numbers:F,V.
- The followingFlines: Each of these lines containsVintegers, so thatAijis given as thejthnumber on the (i+1)stline of the input file.
- 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
- F <= V <= 100 where V is the number of vases.
- -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.
Output
Sample Input
3 5 7 23 -5 -24 16 5 21 -4 10 23 -21 5 -4 -20 20
Sample Output
53
开始没注意全为负数的情况,wa
状态转移方程:
dp[i][j] = num[i][j] + max(dp[i-1][1],dp[i-1][2],...dp[i-1][j-1]);
我们用opt定义以当前I j为结尾的花的排序的最大值,用r*(-50)表示负无穷,初始化时第一行为origin[i][j],后面为r*(-50)
Opt[][] |
1 |
2 |
3 |
4 |
5 |
1 |
7 |
23 |
-5 |
-24 |
16 |
2 |
-150 |
-150 |
-150 |
-150 |
-150 |
3 |
-150 |
-150 |
-150 |
-150 |
-150 |
从第二行开始,对于第i行第j列,对于i>=j,遍历i-1行前j列,求出当前最大值。
Opt[][] |
1 |
2 |
3 |
4 |
5 |
1 |
7 |
23 |
-5 |
-24 |
16 |
2 |
-150 |
21+7 |
-4+max(7,23) |
10+max(7,23,-24) |
23+max(…) |
3 |
-150 |
-150 |
-150 |
-150 |
-150 |
I=3:
Opt[][] |
1 |
2 |
3 |
4 |
5 |
1 |
7 |
23 |
-5 |
-24 |
16 |
2 |
-150 |
28 |
19 |
33 |
46 |
3 |
-150 |
-150 |
-4+max(-150,28) |
-20+max() |
20+max(-150,28,19,33) |
题解:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int main()
{
freopen("in.txt","r",stdin);
int num[105][105];
int dp[105][105];
int n, m, i, j;
cin >> n >> m;
for(i = 1; i <= n; i++)
{
for(j = 1; j <= m; j++)
{
cin >> num[i][j];
}
}
for(i = 1; i <= n; i++)
{
for(j = 1; j <= m; j++)
{
if(i == 1) dp[1][j] = num[1][j];
else dp[i][j] = -50 * n;
}
}
for(i = 2; i <= n; i++)
{
for(j = 1; j <=m; j++)
{
if(j >= i)
{
for(int k = 1; k < j; k++)
{
if(dp[i][j] < dp[i-1][k] + num[i][j])
dp[i][j] = dp[i-1][k] + num[i][j];
}
}
}
}
int ans = -999999;
for(i = 1; i <= m; i++)
{
ans = max(ans, dp[n][i]);
}
cout << ans << endl;
}