坚持是学习的最好方法

 

坚持是学习的最好方法

唐骏在《我的成功可以复制》中说到他招人的标准很简单,一个是工作态度,一个是学习能力。前一篇博文写的责任属于态度,这里我想谈谈学习。

经常有人问我是如何学习的,有什么办法可以学得更好?我认为学习最好的方法其实很简单,那就是坚持,坚持学习,坚持实践,坚持思考。

每天基本上都要学习,坐公交时会拿着手机看电子书,平时工作多加思考,晚上会根据自己对技术的判断进行知识的搜集和学习,我从工作到现在就是这么一直坚持学习的,我很多大学同学都不太相信:)

学习如同加班,也是在业余时间付出额外精力,只不过是学习是主动,加班是被动的。不停的学习,就和不停的加班一样,会使我们处于一个满负荷运作的状态,不可避免的在某一时刻会感到劳累,这时我会停下来休息,和家人去外面度度假,或者连续打几天游戏,用一些办法来舒缓一下疲劳。其实这只是体力带来的疲劳,还有一种疲劳是只见不断学习而不见成果的假学习。这时就要尽量抓准时机坚持实践,只有通过实践回报不断学习的毅力才能达到真正的快乐学习。

而不断的学习、实践是要基于某一些内容来做的,我们不能太贪心,什么都想做,这时就需要不断的坚持思考,思考存在哪些问题,思考自己能解决哪些问题,怎么通过学习和实践来解决。

在确定了某个领域的问题后,就可以通过很多方式来进行学习了:

1 blog订阅:对感兴趣的blog进行搜集,每天都会花一些时间来查看,以便持续学习和关注。《如何阅读一本书》中说到太多的资讯就如同太少的资讯一样,都是一种对理解力的阻碍。当我们订阅blog一定时期后,你会发现已经blog列表已经很长了,这时就需要进行整理一下,否则会发现自己像无头苍蝇一样看很多内容。大家可以通过很多blog订阅工具,我喜欢用google reader来订阅blog。

2 书籍:书籍一般都是经过作者大量思考和实践总结的一些知识,通过别人的总结可以系统的进行学习,这也是我对不熟悉的知识进行系统学习的一个主要途径。现在好多电子版书籍都可以通过网站找到,也可以在豆瓣上管理自己的读书数目

3 网络搜索 :这是我们大家都常用的方法,一般用来解决当前遇到的问题

4 还有其他一些方法,如写blog、写示例、研究现有产品、给其他人培训和交流、实践中反复思考验证等

C语言-光伏MPPT算法:电导增量法扰动观察法+自动全局搜索Plecs最大功率跟踪算法仿真内容概要:本文档主要介绍了一种基于C语言实现的光伏最大功率点跟踪(MPPT)算法,结合电导增量法与扰动观察法,并引入自动全局搜索策略,利用Plecs仿真工具对算法进行建模与仿真验证。文档重点阐述了两种经典MPPT算法的原理、优缺点及其在不同光照和温度条件下的动态响应特性,同时提出一种改进的复合控制策略以提升系统在复杂环境下的跟踪精度与稳定性。通过仿真结果对比分析,验证了所提方法在快速性和准确性方面的优势,适用于光伏发电系统的高效能量转换控制。; 适合人群:具备一定C语言编程基础和电力电子知识背景,从事光伏系统开发、嵌入式控制或新能源技术研发的工程师及高校研究人员;工作年限1-3年的初级至中级研发人员尤为适合。; 使用场景及目标:①掌握电导增量法与扰动观察法在实际光伏系统中的实现机制与切换逻辑;②学习如何在Plecs中搭建MPPT控制系统仿真模型;③实现自动全局搜索以避免传统算法陷入局部峰值问题,提升复杂工况下的最大功率追踪效率;④为光伏逆变器或太阳能充电控制器的算法开发提供技术参考与实现范例。; 阅读建议:建议读者结合文中提供的C语言算法逻辑与Plecs仿真模型同步学习,重点关注算法判断条件、步长调节策略及仿真参数设置。在理解基本原理的基础上,可通过修改光照强度、温度变化曲线等外部扰动因素,进一步测试算法鲁棒性,并尝试将其移植到实际嵌入式平台进行实验验证。
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)​ 内容概要:本文围绕动态环境下多无人机系统的协同路径规划与防撞问题展开研究,提出基于Matlab的仿真代码实现方案。研究重点在于在复杂、动态环境中实现多无人机之间的高效协同飞行与避障,涵盖路径规划算法的设计与优化,确保无人机集群在执行任务过程中能够实时规避静态障碍物与动态冲突,保障飞行安全性与任务效率。文中结合智能优化算法,构建合理的成本目标函数(如路径长度、飞行高度、威胁规避、转弯角度等),并通过Matlab平台进行算法验证与仿真分析,展示多机协同的可行性与有效性。; 适合人群:具备一定Matlab编程基础,从事无人机控制、路径规划、智能优化算法研究的科研人员及研究生。; 使用场景及目标:①应用于灾害救援、军事侦察、区域巡检等多无人机协同任务场景;②目标是掌握多无人机系统在动态环境下的路径规划与防撞机制,提升协同作业能力与自主决策水平;③通过Matlab仿真深入理解协同算法的实现逻辑与参数调优方法。; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注目标函数设计、避障策略实现与多机协同逻辑,配合仿真结果分析算法性能,进一步可尝试引入新型智能算法进行优化改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值