import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Lasso, Ridge
from sklearn.model_selection import GridSearchCV
if __name__ == "__main__":
show = True
path = './Advertising.csv'
# pandas读取数据
data = pd.read_csv(path) # TV Radio Newspaper Sales
x = data[['TV', 'Radio', 'Newspaper']]
y = data['Sales']
print(x)
print(y)
# 将数据集分为训练集和测试集 并设置随机种子
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1)
# model = Lasso()
model = Ridge()
alpha_can = np.logspace(-3, 2, 10)
print('alpha_can = ', alpha_can)
np.set_printoptions(suppress=True)
lasso_model = GridSearchCV(model, param_grid={'alpha' : alpha_can}, cv=5)
lasso_model.fit(x_train, y_train)
print('超参数:', lasso_model.best_params_)
order = y_test.argsort(axis=0)
y_test = y_test.values[order]
x_test = x_test.values[order, :]
y_hat = lasso_model.predict(x_test)
print(lasso_model.score(x_test, y_test))
mse = np.average((y_hat - np.array(y_test)) ** 2) # MSE
rmse = np.sqrt(mse) # RMSE
print('mse=', mse)
print('rmse=', rmse)
t = np.arange(len(x_test))
mpl.rcParams['font.sans-serif'] = ['simHei']
mpl.rcParams['axes.unicode_minus'] = False
plt.figure(facecolor='w')
plt.plot(t, y_test, 'r-', linewidth=2, label='真实数据')
plt.plot(t, y_hat, 'g-', linewidth=2, label='预测数据')
plt.legend(loc='upper left')
plt.title('线性回归预测销量', fontsize=18)
plt.grid(b=True, ls=':')
plt.show()