William H. Gates

介绍了微软公司创始人比尔·盖茨的成长经历、他对个人计算领域的贡献以及微软公司在软件行业的领导地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

William H. Gates
微软公司主席和首席软件设计师

William (Bill) H. Gates 是微软公司主席和首席软件设计师。微软公司是为个人计算和商业计算提供软件、服务和Internet技术的世界范围内的领导者。在截止于2000年6月的上个财年,微软公司收入达229.6亿美元,在60个国家的雇员总数超过了44,000人。

盖茨出生于1955年10月28日,和两个姐姐一块在西雅图长大。他的父亲,William H. Gates II,是西雅图的律师。他过世的母亲,Mary Gates,是学校教师,华盛顿大学的董事以及United Way International的主席。

盖茨曾就读于在西雅图的公立小学和私立的湖滨中学。在那里,他发现了他在软件方面的兴趣并且在13岁时开始了计算机编程。

1973年, 盖茨考进了哈佛大学. 在那里他和现在微软的首席执行官史蒂夫·鲍尔默住在一起。 在哈佛的时候,盖茨为第一台微型计算机 – MITS Altair 开发了BASIC编程语言的一个版本。

在大三的时候,盖茨离开了哈佛并把全部精力投入到他与孩提时代的好友Paul Allen在1975年创建的微软公司中。在计算机将成为每个家庭、每个办公室中最重要的工具这样信念的引导下,他们开始为个人计算机开发软件。盖茨的远见卓识以及他对个人计算的先见之明成为微软和软件产业成功的关键。

上排:Steve Wood (左),Bob Wallace,Jim Lane. 中排: Bob O'Rear, Bob Greenberg, Marc McDonald, Gordon Letwin. 下排:Bill Gates, Andrea Lewis, Marla Wood, Paul Allen. 摄于 1978年12月7日.

在盖茨的领导下,微软持续地发展改进软件技术,使软件更加易用,更省钱和更富于乐趣。公司致力于长期的发展,从目前每财年超过40亿美元的研究开发经费就可看出这一点。

1999 年, 盖茨纂写了《未来时速》一书,向人们展示了计算机技术是如何以崭新的方式来解决商业问题的。这本书在超过60个国家以25种语言出版。 《未来时速》 赢得了广泛的赞誉,并被纽约时报、今日美国、华尔街日报和Amazon.com列为畅销书。盖茨的上一本书,于1995年出版的《 The Road Ahead》(未来之路), 曾经连续七周名列纽约时报畅销书排行榜的榜首。

盖茨把两本书的全部收入捐献给了非赢利组织以支持利用科技进行教育和技能培训。

除了对计算机和软件的热爱之外,盖茨对生物技术也很有兴趣。他是ICOS公司的董事长,这是一家专注于蛋白质基体及小分子疗法的公司。他也是很多其它生物技术公司的投资人。盖茨还成立了Corbis公司, 它正在研究开发世界最大的可视信息资源之一 – 来自于全球公共收藏和私人收藏的艺术及摄影作品综合数字档案。此外,盖茨还和移动电话先锋Craig McCaw 一起投资于Teledesic。这是一个雄心勃勃的计划,计划使用几百个低轨道卫星来提供覆盖全世界的双向宽带电讯服务。

对于盖茨来说,慈善事业也是非常重要的。他和他的妻子Melinda已经捐赠了超过210亿美元建立了一个基金,支持在全球医疗健康和知识学习领域的慈善事业,希望随着人类进入21世纪,这些关键领域的科技进步能使全人类受益。到今天为止,盖茨和他的妻子Melinda Gates 建立的基金已经将20多亿美元用于了全球的健康事业,将5亿多美元用于改善人们的学习条件,其中包括为盖茨图书馆购置计算机设备、为美国和加拿大的低收入社区的公共图书馆提供Internet培训和Internet访问服务。此外将超过2亿元用于西北太平洋地区的社区项目建设,将超过2900万美元用在了一些特殊项目和每年的礼物发放活动上。

盖茨和Melinda French Gates 于1994年1月1日结婚。他们有两个孩子:女儿Jennifer Katharine Gates,生于1996年; 儿子 Rory John Gates, 生于1999年。

盖茨是一个热心读者,喜欢打高尔夫球和桥牌。

 
from qiskit import QuantumCircuit, execute, Aer, transpile from qiskit.circuit.library import ZZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel from qiskit.aqua.components.optimizers import COBYLA from dwave.system import EmbeddingComposite, DWaveSampler import numpy as np import pandas as pd import tensorflow as tf from sklearn.svm import SVC from scipy.stats import poisson import nltk from nltk.sentiment import SentimentIntensityAnalyzer from sklearn.preprocessing import MinMaxScaler from functools import lru_cache, wraps import logging from concurrent.futures import ThreadPoolExecutor import time import warnings import psutil import pickle import sys import math # 配置日志 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger('QuantumFootballPrediction') warnings.filterwarnings('ignore', category=UserWarning) # 初始化NLP工具 try: nltk.data.find('sentiment/vader_lexicon.zip') except LookupError: nltk.download('vader_lexicon', quiet=True) sia = SentimentIntensityAnalyzer() # 添加性能监控 def performance_monitor(func): call_counts = {} @wraps(func) def wrapper(*args, **kwargs): start_time = time.perf_counter() start_mem = psutil.Process().memory_info().rss / 1024 / 1024 # MB result = func(*args, **kwargs) elapsed = time.perf_counter() - start_time end_mem = psutil.Process().memory_info().rss / 1024 / 1024 # 获取类实例 instance = args[0] if args else None logger_name = getattr(instance, 'logger', logger).name if instance else logger.name # 记录执行时间与内存 logging.getLogger(logger_name).info( f"{func.__name__}: " f"Time={elapsed:.4f}s, " f"Mem={end_mem - start_mem:.2f}MB, " f"Called={call_counts.get(func.__name__, 0) + 1} times" ) # 更新调用计数 call_counts[func.__name__] = call_counts.get(func.__name__, 0) + 1 # 量子电路特定指标 if 'quantum' in func.__name__ and isinstance(result, dict) and 'circuit' in result: circuit = result['circuit'] logging.getLogger(logger_name).debug( f"Quantum circuit depth: {circuit.depth()}, gates: {len(circuit)}" ) return result return wrapper class QuantumMatchPredictor: """量子比赛预测器 - 核心量子预测组件""" def __init__(self, n_qubits=4): self.n_qubits = n_qubits self.optimizer = COBYLA(maxiter=100) self.backend = Aer.get_backend('qasm_simulator') self.feature_map = ZZFeatureMap(n_qubits, reps=2) def build_circuit(self, features: np.ndarray) -> QuantumCircuit: """构建参数化预测线路 - 优化为O(n)复杂度""" qc = QuantumCircuit(self.n_qubits) # 特征编码层 - 使用特征值直接映射到旋转门 for i, val in enumerate(features[:self.n_qubits]): qc.ry(val * np.pi, i) # 特征值映射到[0, π]范围 # 添加特征映射层 qc.compose(self.feature_map, inplace=True) return qc @performance_monitor def predict(self, features: np.ndarray, shots=1024) -> float: """量子预测核心 - 返回主胜概率""" qc = self.build_circuit(features) # 添加测量 qc.measure_all() # 执行并返回概率 try: tqc = transpile(qc, self.backend, optimization_level=1) result = execute(tqc, self.backend, shots=shots).result() counts = result.get_counts(tqc) # 返回全1状态的概率作为主胜概率 return counts.get('1'*self.n_qubits, 0) / shots except Exception as e: logger.error(f"量子预测执行失败: {e}") # 返回随机值作为后备 return np.random.uniform(0.4, 0.6) class QuantumFootballPredictionModel: # 资源管理常量 MAX_QUBITS = 8 MAX_BATCH_SIZE = 8 _quantum_shots = 5000 def __init__(self, biomechanics_model_path=None): # 联赛特异性权重模板 self.league_templates = { '英超': {'体能系数': 1.3, '顺力度': 0.9, '特殊规则': '补时>5分钟时大球概率+15%'}, '意甲': {'防守强度': 1.5, '往绩克制': 1.2, '特殊规则': '平局概率基准值+8%'}, '德甲': {'主场优势': 1.4, '前锋缺阵影响': 2, '特殊规则': '半场领先最终胜率92%'}, '西甲': {'技术流修正': 1.2, '裁判影响': 0.7, '特殊规则': '强队让1.25盘口下盘率61%'} } # 量子计算资源 self.quantum_resources = self.detect_quantum_resources() logger.info(f"检测到量子资源: {self.quantum_resources}") # 量子计算后端 self.quantum_simulator = Aer.get_backend('qasm_simulator') self.dwave_sampler = None if self.quantum_resources.get('dwave', False): try: self.dwave_sampler = EmbeddingComposite(DWaveSampler()) logger.info("成功连接D-Wave量子处理器") except Exception as e: logger.warning(f"无法连接D-Wave量子处理器: {e}") # 预加载模型 self.biomechanics_model = None if biomechanics_model_path: try: self.biomechanics_model = tf.keras.models.load_model(biomechanics_model_path) logger.info("成功加载生物力学模型") except Exception as e: logger.error(f"加载生物力学模型失败: {e}") # 初始化量子匹配预测器 self.quantum_predictor = QuantumMatchPredictor(n_qubits=4) self.lstm_model = self.build_lstm_model() self._energy_cache = {} self.energy_matrix = np.array([[0.5, -0.3], [-0.3, 0.5]]) # 预计算矩阵 @property def quantum_shots(self): if self.quantum_resources.get('dwave', False): return 2000 # D-Wave系统采样更可靠,可减少次数 elif self.quantum_resources.get('ibmq', False): return 8192 # IBMQ硬件需要更多采样 else: return self._quantum_shots # 默认模拟器采样次数 def detect_quantum_resources(self): """检测可用量子计算资源""" resources = { "local_simulator": True, "ibmq": False, "dwave": False } try: from qiskit import IBMQ IBMQ.load_account() providers = IBMQ.providers() resources["ibmq"] = len(providers) > 0 except Exception as e: logger.info(f"IBM Quantum访问失败: {e}") try: from dwave.cloud import Client client = Client.from_config() if client.get_solvers(): resources["dwave"] = True client.close() except Exception as e: logger.info(f"D-Wave访问失败: {e}") return resources def build_lstm_model(self): """优化后的LSTM变盘预测模型""" model = tf.keras.Sequential([ tf.keras.layers.LSTM(128, return_sequences=True, input_shape=(60, 3)), tf.keras.layers.Dropout(0.2), tf.keras.layers.LSTM(64), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(3, activation='softmax') ]) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) return model # ======================== # 输入层:数据标准化 # ======================== @performance_monitor def standardize_input(self, raw_data): """数据标准化处理""" standardized = {} # 基础信息 league_weights = {'英超': 1.2, '西甲': 1.15, '意甲': 1.1, '德甲': 1.15, '法甲': 1.05} weather_weights = {'晴天': 0, '多云': -0.1, '小雨': -0.2, '大雨': -0.3, '雪': -0.4} standardized['league'] = league_weights.get(raw_data.get('league', '其他'), 1.0) standardized['weather'] = weather_weights.get(raw_data.get('weather', '晴天'), 0) standardized['pitch'] = raw_data.get('pitch_condition', 0.85) # 赛季周数(用于动态权重计算) match_week = raw_data.get('match_week', 1) standardized['match_week'] = min(max(match_week, 1), 38) # 限制在1-38周范围内 # 球队实力 home_rank = raw_data.get('home_rank', 10) away_rank = raw_data.get('away_rank', 10) home_win_rate = raw_data.get('home_win_rate', 0.5) away_win_rate = raw_data.get('away_win_rate', 0.5) home_rank_weight = 1 / max(home_rank, 1) # 防止除零 away_rank_weight = 1 / max(away_rank, 1) # 向量化计算 home_factors = np.array([home_win_rate, home_rank_weight]) away_factors = np.array([away_win_rate, away_rank_weight]) weights = np.array([0.3, 0.7]) standardized['home_strength'] = np.dot(home_factors, weights) standardized['away_strength'] = np.dot(away_factors, weights) # 保存原始胜率用于量子预测 standardized['home_win_rate'] = home_win_rate standardized['away_win_rate'] = away_win_rate # 交锋历史 historical_win_rate = raw_data.get('historical_win_rate', 0.5) historical_win_odds_rate = raw_data.get('historical_win_odds_rate', 0.5) standardized['history_advantage'] = ( 0.6 * historical_win_rate + 0.4 * historical_win_odds_rate ) # 伤停影响 injury_impact = 0 injuries = raw_data.get('injuries', {}) for position, count in injuries.items(): if position == 'forward': injury_impact -= 0.2 * count elif position == 'goalkeeper': injury_impact -= 0.3 * count elif position == 'defender': injury_impact -= 0.15 * count elif position == 'midfielder': injury_impact -= 0.1 * count standardized['injury_impact'] = min(max(injury_impact, -1.0), 0) # 限制范围 # 赛程疲劳 matches_last_7_days = raw_data.get('matches_last_7_days', 0) travel_distance = raw_data.get('travel_distance', 0) standardized['fatigue'] = min( 0.3 * min(matches_last_7_days, 4) + # 限制最多4场 0.7 * min(travel_distance / 1000, 5.0), # 限制最多5000公里 10.0 # 最大值限制 ) # 赔率数据 standardized['william_odds'] = raw_data.get('william_odds', [2.0, 3.0, 3.5]) standardized['asian_odds'] = raw_data.get('asian_odds', [0.85, 0.95, 1.0, 0.92]) # 市场热度 betfair_volume_percent = raw_data.get('betfair_volume_percent', 0.5) theoretical_probability = raw_data.get('theoretical_probability', 0.5) if theoretical_probability > 0: standardized['market_heat'] = min(max( (betfair_volume_percent - theoretical_probability) / theoretical_probability, -1.0), 1.0) # 限制在[-1,1]范围 else: standardized['market_heat'] = 0.0 # 3D姿态数据 if 'player_movement' in raw_data and self.biomechanics_model is not None: try: standardized['injury_risk'] = self.injury_risk_prediction(raw_data['player_movement']) except Exception as e: logger.error(f"伤病风险预测失败: {e}") standardized['injury_risk'] = 0.0 else: standardized['injury_risk'] = 0.0 return standardized # ======================== # 特征引擎层 # ======================== def injury_risk_prediction(self, player_movement): """3D姿态伤病预测""" asymmetry = self.calc_joint_asymmetry(player_movement) load_dist = self.weight_distribution_imbalance(player_movement) # 确保输入为二维数组 input_data = np.array([[asymmetry, load_dist]]) return self.biomechanics_model.predict(input_data, verbose=0)[0][0] def calc_joint_asymmetry(self, movement_data): """计算关节不对称性""" # 假设movement_data包含左右数据 left_side = movement_data.get('left_side', np.zeros(10)) right_side = movement_data.get('right_side', np.zeros(10)) return np.mean(np.abs(left_side - right_side)) def weight_distribution_imbalance(self, movement_data): """计算重量分布不平衡""" front_load = movement_data.get('front_load', np.zeros(10)) back_load = movement_data.get('back_load', np.zeros(10)) return np.abs(np.mean(front_load - back_load)) @performance_monitor def quantum_clustering(self, odds_matrix): """量子聚类广实区间判定""" try: # 限制特征维度 feature_dimension = min(odds_matrix.shape[1], 4) feature_map = ZZFeatureMap(feature_dimension=feature_dimension, reps=2) q_kernel = QuantumKernel(feature_map=feature_map, quantum_instance=self.quantum_simulator) return SVC(kernel=q_kernel.evaluate).fit_predict(odds_matrix) except Exception as e: logger.error(f"量子聚类失败: {e}") # 返回随机结果作为后备 return np.random.randint(0, 2, size=odds_matrix.shape[0]) def momentum_calculation(self, recent_form, history_advantage, form_continuity, odds_match, market_sentiment): """顺力度量化计算""" return min(max( 0.4 * recent_form + 0.3 * history_advantage + 0.15 * form_continuity + 0.1 * odds_match + 0.05 * market_sentiment, 0.0), 10.0) # 限制在[0,10]范围 @lru_cache(maxsize=100) def energy_balance_model(self, home_energy, away_energy, match_type): """优化后的动态能量守恒模型""" # 添加对match_type的处理 if match_type not in ['regular', 'derby', 'cup']: match_type = 'regular' # 根据比赛类型设置参数 gamma = 0.8 if match_type == 'derby' else 0.5 if match_type == 'cup' else 0.3 t = self.standardized_data.get('fatigue', 0) team_energy = np.array([home_energy, away_energy]) fatigue_vector = np.array([-gamma * t, gamma * t]) dE = np.dot(self.energy_matrix, team_energy) + fatigue_vector # 限制能量变化范围 dE[0] = min(max(dE[0], -1.0), 1.0) dE[1] = min(max(dE[1], -1.0), 1.0) return dE[0], dE[1] # ======================== # 量子优化层 # ======================== @performance_monitor def quantum_annealing_optimizer(self, prob_dist, market_data): """量子退火赔率平衡器""" # 参数校验 if not all(0 <= p <= 1 for p in prob_dist): logger.warning("概率分布值超出范围,进行归一化") total = sum(prob_dist) if total > 0: prob_dist = [p/total for p in prob_dist] else: prob_dist = [1/3, 1/3, 1/3] if self.dwave_sampler is None: logger.warning("D-Wave采样器不可用,使用经典优化") # 经典模拟退火作为后备 from scipy.optimize import minimize def objective(x): return -np.dot(prob_dist, x) # 约束条件:概率和为1 constraints = ({'type': 'eq', 'fun': lambda x: sum(x) - 1}) bounds = [(0, 1) for _ in range(3)] initial_guess = prob_dist result = minimize(objective, initial_guess, method='SLSQP', bounds=bounds, constraints=constraints) return result.x if result.success else [1/3, 1/3, 1/3] h = {0: -prob_dist[0], 1: -prob_dist[1], 2: -prob_dist[2]} J = {(0,1): market_data.get('arbitrage', 0), (0,2): -market_data.get('deviation', 0), (1,2): market_data.get('trend', 0)} try: response = self.dwave_sampler.sample_ising(h, J, num_reads=1000) sample = response.first.sample # 将样本转换为概率调整 adjusted_probs = [prob_dist[i] * (1 + 0.1 * sample[i]) for i in range(3)] # 归一化 total = sum(adjusted_probs) return [p/total for p in adjusted_probs] if total > 0 else [1/3, 1/3, 1/3] except Exception as e: logger.error(f"量子退火优化失败: {e}") return prob_dist def lstm_odds_change(self, historical_odds): """LSTM赔率变盘预测""" if historical_odds is None or len(historical_odds) < 60: logger.warning("历史赔率数据不足,使用简单平均") return np.argmax(np.mean(historical_odds, axis=0)) if historical_odds else 0 # 数据预处理 scaler = MinMaxScaler() scaled_odds = scaler.fit_transform(historical_odds) X = scaled_odds.reshape(1, scaled_odds.shape[0], scaled_odds.shape[1]) # 预测变盘方向 prediction = self.lstm_model.predict(X, verbose=0) return np.argmax(prediction) @performance_monitor def quantum_score_simulation(self, home_energy, away_energy, hist_avg): """优化后的量子蒙特卡洛比分预测""" # 使用更高效的量子比特分配方案 qc = QuantumCircuit(4) # 减少到4个量子比特以提高效率 # 主客队能量编码 theta_home = home_energy * np.pi theta_away = away_energy * np.pi # 应用旋转门 qc.ry(theta_home, 0) qc.ry(theta_away, 1) # 历史交锋影响 hist_factor = min(1.0, abs(hist_avg[0] - hist_avg[1]) * 0.5) if hist_avg[0] > hist_avg[1]: qc.crx(hist_factor * np.pi, 0, 2) else: qc.crx(hist_factor * np.pi, 1, 3) # 纠缠量子比特以增加相关性 - O(n)复杂度 for i in range(self.n_qubits - 1): qc.cx(i, i+1) # 测量 qc.measure_all() # 量子采样 backend = self.quantum_simulator try: tqc = transpile(qc, backend, optimization_level=3) job = execute(tqc, backend, shots=self.quantum_shots) result = job.result() counts = result.get_counts(tqc) except Exception as e: logger.error(f"量子比分模拟失败: {e}") return f"{round(hist_avg[0])}-{round(hist_avg[1])}" # 改进的比分解码逻辑 goal_counts = {} for state, count in counts.items(): # 前2位表示主队进球数,后2位表示客队进球数 home_goals = int(state[:2], 2) % 5 # 限制最大进球数为4 away_goals = int(state[2:], 2) % 5 # 应用泊松分布修正 home_goals = min(home_goals, 4) away_goals = min(away_goals, 4) score = f"{home_goals}-{away_goals}" goal_counts[score] = goal_counts.get(score, 0) + count # 返回出现频率最高的比分 return max(goal_counts, key=goal_counts.get) # ======================== # 动态修正层 # ======================== def apply_league_template(self, league_type, features): """应用联赛特异性模板""" template = self.league_templates.get(league_type, {}) for feature, factor in template.items(): if feature in features and isinstance(features[feature], (int, float)): features[feature] *= factor return features def enhanced_cold_warning(self, team_energy, market_data): """增强型冷门预警""" risk_score = 0 # 能量赔率偏离 fair_odds = market_data.get('fair_odds', 0.5) if abs(team_energy - fair_odds) > 0.25: risk_score += 35 # 社交媒体情绪 if market_data.get('social_sentiment', 0) > 0.65: risk_score += 20 # 主力轮换检测 training_intensity = market_data.get('training_intensity', 50) coach_tone = market_data.get('coach_tone', 'normal') if training_intensity < 45 and coach_tone == 'conservative': risk_score += 25 return min(risk_score, 100) # 上限100 def inplay_calibration(self, pre_match_pred, match_status): """修复后的滚球实时校准""" win_prob = pre_match_pred['home_win_prob'] # 领先方被压制 if 'xG_diff' in match_status and 'possession' in match_status: if match_status['xG_diff'] < -0.8 and match_status.get('score_lead', 0) == 1: win_prob -= 0.15 * (1 - match_status['possession']/100) # 红牌影响 if match_status.get('red_card', False): card_team = match_status.get('card_team', 0) # 0=主队, 1=客队 minute = match_status.get('minute', 0) time_factor = max(0, (90 - minute) / 90) if card_team == 0: # 主队红牌 win_prob -= 0.4 * time_factor else: # 客队红牌 win_prob += 0.25 * time_factor # 确保概率在[0,1]范围内 win_prob = max(0.0, min(1.0, win_prob)) # 更新预测结果 updated_pred = pre_match_pred.copy() updated_pred['home_win_prob'] = win_prob return updated_pred # ======================== # 决策输出层 # ======================== def win_probability(self, home_rating, away_rating, william_odds, return_rate=0.95, fatigue_factor=0): """修复后的胜平负概率计算""" rating_diff = (home_rating - away_rating) / 5 base_prob = 1 / (1 + np.exp(-rating_diff)) european_prob = return_rate / william_odds[0] if william_odds[0] > 0 else base_prob p_home_win = base_prob * 0.7 + european_prob * 0.3 if fatigue_factor > 2.0: away_rating_adj = away_rating * (1 - min(fatigue_factor/10, 0.3)) rating_diff_adj = (home_rating - away_rating_adj) / 5 base_prob_adj = 1 / (1 + np.exp(-rating_diff_adj)) p_home_win = base_prob_adj * 0.6 + european_prob * 0.4 # 改进的平局概率计算 draw_prob = (1 - abs(home_rating - away_rating)/10) * 0.3 # 考虑赔率中的平局概率 if len(william_odds) > 1 and william_odds[1] > 0: draw_prob = (draw_prob + return_rate/william_odds[1]) / 2 # 确保概率在合理范围内 p_home_win = min(max(p_home_win, 0.1), 0.8) draw_prob = min(max(draw_prob, 0.1), 0.5) p_away_win = 1 - p_home_win - draw_prob # 归一化处理 total = p_home_win + draw_prob + p_away_win p_home_win /= total draw_prob /= total p_away_win /= total return p_home_win, draw_prob, p_away_win # ======================== # 动态权重计算 # ======================== def calculate_dynamic_weights(self, match_week): """ 计算量子模型和传统模型的动态权重 使用公式: α(t) = 1 / (1 + exp(-k(t - t0))) 其中 t0 = 20 (赛季中段), k = 0.1 量子权重: w_q = α(t) × 0.7 + 0.3 传统权重: w_c = 1 - w_q """ t = match_week t0 = 20 # 赛季中段 k = 0.1 # 调整参数 # 计算α(t) alpha = 1 / (1 + math.exp(-k * (t - t0))) # 量子权重在0.3-1.0之间变化 w_quantum = alpha * 0.7 + 0.3 w_classic = 1 - w_quantum logger.info(f"动态权重计算: 赛季周数={t}, α={alpha:.3f}, 量子权重={w_quantum:.3f}, 传统权重={w_classic:.3f}") return w_quantum, w_classic # ======================== # 量子特征预测 # ======================== def quantum_feature_prediction(self, features: dict) -> float: """ 使用量子模型预测比赛特征 特征顺序: home_strength, away_strength, history_advantage, fatigue """ try: # 准备量子预测的特征数组 quantum_features = np.array([ features['home_strength'], features['away_strength'], features['history_advantage'], features['fatigue'] ]) # 进行量子预测 return self.quantum_predictor.predict(quantum_features) except Exception as e: logger.error(f"量子特征预测失败: {e}") # 返回随机值作为后备 return np.random.uniform(0.4, 0.6) # ======================== # 整合预测流程 # ======================== @performance_monitor def predict(self, raw_data): """整合预测流程 - 包含量子与传统模型动态融合""" try: # 1. 数据标准化 self.standardized_data = self.standardize_input(raw_data) league = raw_data.get('league', '英超') # 2. 应用联赛模板 self.apply_league_template(league, self.standardized_data) # 3. 计算球队能量 home_energy = self.standardized_data['home_strength'] * (1 + self.standardized_data['history_advantage']) away_energy = self.standardized_data['away_strength'] * (1 - self.standardized_data['injury_impact']) # 4. 量子比分模拟 hist_avg = raw_data.get('historical_avg_score', [1.5, 1.2]) predicted_score = self.quantum_score_simulation(home_energy, away_energy, hist_avg) # 5. 传统胜平负概率计算 william_odds = self.standardized_data['william_odds'] home_win, draw, away_win = self.win_probability( home_energy, away_energy, william_odds, fatigue_factor=self.standardized_data['fatigue'] ) # 6. 量子特征预测 quantum_prediction = self.quantum_feature_prediction({ 'home_strength': self.standardized_data['home_strength'], 'away_strength': self.standardized_data['away_strength'], 'history_advantage': self.standardized_data['history_advantage'], 'fatigue': self.standardized_data['fatigue'] }) # 7. 动态融合量子与传统预测 match_week = self.standardized_data.get('match_week', 1) w_quantum, w_classic = self.calculate_dynamic_weights(match_week) # 融合主胜概率 fused_home_win = w_quantum * quantum_prediction + w_classic * home_win # 保持相对比例不变 scale = (1 - fused_home_win) / (1 - home_win) if home_win < 1.0 else 1.0 fused_draw = draw * scale fused_away_win = away_win * scale # 归一化处理 total = fused_home_win + fused_draw + fused_away_win fused_home_win /= total fused_draw /= total fused_away_win /= total fused_probs = [fused_home_win, fused_draw, fused_away_win] # 8. 量子退火优化赔率 market_data = { 'arbitrage': raw_data.get('arbitrage_opportunity', 0.05), 'deviation': raw_data.get('odds_deviation', 0.1), 'trend': raw_data.get('market_trend', 0.0) } optimized_probs = self.quantum_annealing_optimizer(fused_probs, market_data) # 9. 冷门预警 cold_risk = self.enhanced_cold_warning(home_energy, { 'fair_odds': 1/(william_odds[0] * 1.05), 'social_sentiment': raw_data.get('social_sentiment', 0.5), 'training_intensity': raw_data.get('training_intensity', 60), 'coach_tone': raw_data.get('coach_tone', 'normal') }) # 10. 构建最终结果 result = { 'predicted_score': predicted_score, 'home_win_prob': optimized_probs[0], 'draw_prob': optimized_probs[1], 'away_win_prob': optimized_probs[2], 'cold_risk': f"{cold_risk}%", 'key_factors': { 'home_energy': home_energy, 'away_energy': away_energy, 'injury_impact': self.standardized_data['injury_impact'], 'fatigue_factor': self.standardized_data['fatigue'], 'weather_impact': self.standardized_data['weather'], 'quantum_prediction': quantum_prediction, 'w_quantum': w_quantum, 'w_classic': w_classic }, 'quantum_optimized': True if self.dwave_sampler else False } # 11. 如果有滚球数据,进行实时校准 if 'inplay_data' in raw_data: result = self.inplay_calibration(result, raw_data['inplay_data']) return result except Exception as e: logger.exception("预测过程中发生错误") return { 'error': str(e), 'fallback_prediction': self.fallback_prediction(raw_data) } def fallback_prediction(self, raw_data): """经典方法作为后备预测""" # 简单基于排名和赔率的预测 home_rank = raw_data.get('home_rank', 10) away_rank = raw_data.get('away_rank', 10) home_adv = (away_rank - home_rank) * 0.05 # 基本胜率计算 home_win = 0.4 + home_adv away_win = 0.3 - home_adv draw = 0.3 # 考虑赔率影响 if 'william_odds' in raw_data: odds = raw_data['william_odds'] implied_home = 1/odds[0] home_win = (home_win + implied_home) / 2 return { 'home_win_prob': home_win, 'draw_prob': draw, 'away_win_prob': away_win, 'predicted_score': "1-1", 'cold_risk': "30%", 'note': "经典预测方法" } # 示例使用 if __name__ == "__main__": # 创建示例数据 sample_data = { 'league': '英超', 'weather': '小雨', 'pitch_condition': 0.8, 'home_rank': 3, 'away_rank': 8, 'home_win_rate': 0.7, 'away_win_rate': 0.4, 'historical_win_rate': 0.6, 'historical_win_odds_rate': 0.55, 'injuries': {'forward': 1, 'defender': 2}, 'matches_last_7_days': 2, 'travel_distance': 800, # 公里 'william_odds': [1.8, 3.4, 4.2], 'asian_odds': [0.85, 0.95, 1.0, 0.92], 'betfair_volume_percent': 0.65, 'theoretical_probability': 0.55, 'historical_avg_score': [1.8, 1.0], 'arbitrage_opportunity': 0.03, 'odds_deviation': 0.15, 'market_trend': -0.1, 'social_sentiment': 0.7, 'training_intensity': 40, 'coach_tone': 'conservative', 'match_type': 'derby', # 比赛类型 'match_week': 5 # 赛季第5周 } # 添加3D姿态数据(简化示例) sample_data['player_movement'] = { 'left_side': np.array([0.8, 0.7, 0.9, 0.85, 0.75]), 'right_side': np.array([0.6, 0.65, 0.7, 0.8, 0.75]), 'front_load': np.array([0.5, 0.55, 0.6]), 'back_load': np.array([0.4, 0.45, 0.5]) } # 创建模型实例并预测 model = QuantumFootballPredictionModel() prediction = model.predict(sample_data) print("\n足球比赛预测结果:") print(f"预测比分: {prediction.get('predicted_score', 'N/A')}") print(f"主胜概率: {prediction.get('home_win_prob', 0):.2%}") print(f"平局概率: {prediction.get('draw_prob', 0):.2%}") print(f"客胜概率: {prediction.get('away_win_prob', 0):.2%}") print(f"量子预测值: {prediction.get('key_factors', {}).get('quantum_prediction', 0):.2%}") print(f"量子权重: {prediction.get('key_factors', {}).get('w_quantum', 0):.2f}") print(f"传统权重: {prediction.get('key_factors', {}).get('w_classic', 0):.2f}") print(f"冷门风险: {prediction.get('cold_risk', 'N/A')}") print(f"是否量子优化: {prediction.get('quantum_optimized', False)}") # 添加滚球数据示例 sample_data['inplay_data'] = { 'minute': 60, 'score': '1-0', 'possession': 45, # 主队控球率% 'xG_diff': -0.7, # 主队预期进球差 'red_card': True, 'card_team': 0 # 0=主队 } # 滚球校准 inplay_prediction = model.predict(sample_data) print("\n滚球校准后主胜概率:", f"{inplay_prediction.get('home_win_prob', 0):.2%}")
06-16
<think>嗯,用户遇到了一个C++代码中的错误,说gate_desc是未定义的标识符。让我仔细看看这个代码片段:for (const auto& [gate_desc, inputs] : circuit.gates)。这看起来像是一个结构化绑定的用法。结构化绑定是C++17引入的特性,允许用分解声明来绑定变量到元组或结构体的成员。 首先,我需要确认用户的开发环境是否支持C++17或更高版本。因为结构化绑定在C++17之前是不可用的。如果用户使用的是旧版本的编译器,比如C++14或更早,编译器确实无法识别这种语法,从而报错gate_desc未定义。 另外,用户可能没有正确包含相关的头文件或者没有正确声明circuit.gates容器的元素类型。结构化绑定要求容器中的元素是可分解的,比如std::pair、std::tuple或者结构体。如果circuit.gates的元素类型不支持结构化绑定,那么分解的时候也会出现错误。 还有一种可能是用户的代码中存在拼写错误或者作用域问题。例如,可能在循环外部已经有一个gate_desc变量,导致编译器混淆,但这种情况比较少见,因为结构化绑定通常会在循环体内创建新的变量。 我应该分步骤引导用户检查这些问题。首先确认编译器版本和标准是否支持C++17,然后检查容器元素的类型是否适合结构化绑定,最后检查是否有拼写错误或其他语法问题。这样用户就能系统地排查问题所在了。</think>这个错误通常出现在C++结构化绑定语法使用不当时。让我们逐步分析: 1. **结构化绑定要求**: - 需要C++17或更高标准(检查编译器选项是否有`-std=c++17`) - 被遍历的容器元素必须是可分解的结构(如`std::pair`, `std::tuple`或自定义结构体) 2. **典型问题排查**: ```cpp // 假设circuit.gates的类型可能是: std::vector<std::pair<std::string, std::vector<int>>> gates; // 正确用法示例: for (const auto& [desc, inputs] : circuit.gates) { // desc对应pair的第一个元素 // inputs对应pair的第二个元素 } ``` 3. **可能错误原因**: - 编译器未启用C++17模式(需添加编译选项) - circuit.gates的元素类型不支持结构化绑定 - 实际元素成员名称不匹配(如元素类型没有gate_desc字段) 4. **解决方案建议**: ```cpp // 临时改用传统方式验证元素类型 for (const auto& gate : circuit.gates) { auto& actual_desc = gate.first; // 如果是pair类型 auto& actual_inputs = gate.second; // 查看实际成员名称 } ``` 请检查: - 编译器版本和C++标准设置 - circuit.gates容器的确切类型定义 - 元素类型的实际成员变量名称 如果问题仍然存在,建议提供更多上下文代码以便进一步分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值