
1、图立方和知识图谱的区别和联系与区别
图网络,即Natural Graph,是基于世界各实体之间的自然关系表示而得到的图,他们的节点一般是某个特定网络中的实体(人、物理机、分子)。例如:社交网络、通信网络、蛋白质网络。
知识图谱,即Knowledge Graph,它一般是由知识或信息组织而成的图,它是专门被用来构建知识库并支持决策的。因此知识图谱中的节点可以直接是抽象名词,或者是世界知识或语言知识。
二、异同点
① 二者都是由节点和边组成的图。但是图网络中的实体都是客观存在的,是对真实世界关系的一种呈现;知识图谱主要是把客观世界潜在的知识结构呈现出来,实体可以是抽象的名词。
② 二者都是异质信息网络,但是任务不同。KG是一种知识量丰富的异质信息网络(Heterogeneous Information Network, HIN),它更关注建模实现对关系、节点的表示,模型学习的重点是节点之间的关系,以更好地存储、抽取、推理知识。NG建模任务更关注节点的表示,模型学习的重点是图网络的结构,以达到对节点分类、聚类、链接预测的目的。
三、图网络表示学习(Graph Embedding) VS 知识图谱表示学习(Knowledge Graph Embedding)
也可以称图嵌入学习,分为图网络嵌入graph embedding以及知识图谱嵌入knowledge graph embedding。从起源看,这两个任务中最火的方法DeepWalk和TransE,都是受到了word2vec启发提出来的,只是前者是受到了word2vec处理文本序列、由中心词预测上下文的启发;而后者受到了word2vec能自动发现implicit relation (也就是大家常说的 king - man = queen - woman)的启发。
两者的相同之处是目标一致,都旨在对研究对象建立分布式表示。不同之处在于,知识表示重在如何处理实体间的显式关系上;而网络表示重在如何充分考

文章探讨了图网络和知识图谱的区别和联系,它们都是由节点和边构成的图,但图网络侧重实体的自然关系,而知识图谱专注于知识结构和关系建模。同时,文章提到了智能硬件的关键技术,包括机器学习、知识图谱、自然语言处理等,并指出电话机器人通常需要智能对话分析功能。此外,图卷积神经网络的发展是为了处理复杂的非欧几里得数据,如图和知识图谱,以适应各种应用场景的需求。
最低0.47元/天 解锁文章
661

被折叠的 条评论
为什么被折叠?



