用Matlab算BP神经网络的具体算法?
BP神经网络的传递函数一般采用sigmiod函数,学习算法一般采用最小梯度下降法;下面是具体的程序例子:例1采用动量梯度下降算法训练BP网络。
训练样本定义如下:输入矢量为p=[-1-231-115-3]目标矢量为t=[-1-111]解:本例的MATLAB程序如下:closeallclearechoonclc%NEWFF——生成一个新的前向神经网络%TRAIN——对BP神经网络进行训练%SIM——对BP神经网络进行仿真pause%敲任意键开始clc%定义训练样本%P为输入矢量P=[-1,-2,3,1;-1,1,5,-3];%T为目标矢量T=[-1,-1,1,1];pause;clc%创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')%当前输入层权值和阈值{1,1}inputbias=net.b{1}%当前网络层权值和阈值{2,1}layerbias=net.b{2}pauseclc%设置训练参数=50;=0.05;学习速率=0.9;动量系数net.trainParam.epochs=1000;=1e-3;pauseclc%调用TRAINGDM算法训练BP网络[net,tr]=train(net,P,T);pauseclc%对BP网络进行仿真A=sim(net,P)%计算仿真误差E=T-AMSE=mse(E)pauseclcechooff。
谷歌人工智能写作项目:爱发猫
bp神经网络用啥算法?
自己找个例子算一下,推导一下,这个回答起来比较复杂神经网络对模型的表达能力依赖于优化算法,优化是一个不断计算梯度并调整可学习参数的过程,Fluid中的优化算法可参考 优化器 文案狗。
在网络的训练过程中,梯度计算分为两个步骤:前向计算与 反向传播 。前向计算会根据您搭建的网络结构,将输入单元的状态传递到输出单元。
反向传播借助 链式法则 ,计算两个或两个以上复合函数的导数,将输出单元的梯度反向传播回输入单元,根据计算出的梯度,调整网络的可学习参数。BP算法隐层的引入使网络具有很大的潜力。
但正像Minskey和Papert当时所指出的.虽然对所有那些能用简单(无隐层)网结解决的问题有非常简单的学习规则,即简单感知器的收敛程序(主要归功于Widrow和HMf于1960年提出的Delta规刚),BP算法但当时并没有找到同样有技的含隐层的同培的学习规则。
对此问题的研究有三个基本的结果。一种是使用简单无监督学习规则的竞争学习方法.但它缺乏外部信息.难以确定适台映射的隐层结构。第二条途径是假设一十内部(隐层)的表示方法,这在一些先约条件下是台理的。
另一种方法是利用统计手段