传统算法与神经网络算法,神经网络运用的算法有

本文详细介绍了如何用Matlab编程实现BP神经网络,包括使用sigmoid激活函数和梯度下降法进行训练,涉及动量梯度下降算法,并展示了训练样本和具体代码实例。同时讨论了BP算法的历史背景和关键概念,如权重共享、反向传播等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用Matlab算BP神经网络的具体算法?

BP神经网络的传递函数一般采用sigmiod函数,学习算法一般采用最小梯度下降法;下面是具体的程序例子:例1采用动量梯度下降算法训练BP网络。

训练样本定义如下:输入矢量为p=[-1-231-115-3]目标矢量为t=[-1-111]解:本例的MATLAB程序如下:closeallclearechoonclc%NEWFF——生成一个新的前向神经网络%TRAIN——对BP神经网络进行训练%SIM——对BP神经网络进行仿真pause%敲任意键开始clc%定义训练样本%P为输入矢量P=[-1,-2,3,1;-1,1,5,-3];%T为目标矢量T=[-1,-1,1,1];pause;clc%创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')%当前输入层权值和阈值{1,1}inputbias=net.b{1}%当前网络层权值和阈值{2,1}layerbias=net.b{2}pauseclc%设置训练参数=50;=0.05;学习速率=0.9;动量系数net.trainParam.epochs=1000;=1e-3;pauseclc%调用TRAINGDM算法训练BP网络[net,tr]=train(net,P,T);pauseclc%对BP网络进行仿真A=sim(net,P)%计算仿真误差E=T-AMSE=mse(E)pauseclcechooff。

谷歌人工智能写作项目:爱发猫

bp神经网络用啥算法?

自己找个例子算一下,推导一下,这个回答起来比较复杂神经网络对模型的表达能力依赖于优化算法,优化是一个不断计算梯度并调整可学习参数的过程,Fluid中的优化算法可参考 优化器 文案狗

在网络的训练过程中,梯度计算分为两个步骤:前向计算与 反向传播 。前向计算会根据您搭建的网络结构,将输入单元的状态传递到输出单元。

反向传播借助 链式法则 ,计算两个或两个以上复合函数的导数,将输出单元的梯度反向传播回输入单元,根据计算出的梯度,调整网络的可学习参数。BP算法隐层的引入使网络具有很大的潜力。

但正像Minskey和Papert当时所指出的.虽然对所有那些能用简单(无隐层)网结解决的问题有非常简单的学习规则,即简单感知器的收敛程序(主要归功于Widrow和HMf于1960年提出的Delta规刚),BP算法但当时并没有找到同样有技的含隐层的同培的学习规则。

对此问题的研究有三个基本的结果。一种是使用简单无监督学习规则的竞争学习方法.但它缺乏外部信息.难以确定适台映射的隐层结构。第二条途径是假设一十内部(隐层)的表示方法,这在一些先约条件下是台理的。

另一种方法是利用统计手段

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值