
BP神经网络
我不是大神。但可以给给意见。1,遗传算法不能改变BP神经网络准确率低的本质问题的。只能在一定程度上优化BP神经网络。2,你的数据是怎么增加的?由原来的80组数据基础上随意组合的?
还有你的输出结果是3个等级。期望输出是什么类型?预测输出是什么类型?你判断正确率的标准是什么?这些都会对正确率有影响。3,BP神经网络的正确率的提高可以通过:一,改变隐层的节点数。或增减隐层的层数。
最少一个隐层,最多2个。二,改变传递函数,一般隐层用tansig,输出层用linear或者tansig。4,最后的方法是不怎么重要的,就是数据的归一化,一般是归一化或不归一化都可以的,都试试。
我都是书本学过,做过点题目,只能给这些建议。
谷歌人工智能写作项目:小发猫

如何提高bp神经网络的预测精度啊
跟你的预测对象有很大关系rfid。1.根据你的预测对象的特性选取合适的输入层、输出层和隐层神经元数目。2.选择合适的神经网络训练函数。
3.保证足够的训练样本数据,并且确保这个训练样本数据有足够的精度能够反映需要预测的对象的特性。
采用什么手段使神经网络预测更加准确
优化神经网络结构。如BP神经网络改变隐层神经元数量、训练算法等;使用其他神经网络。如Elman神经网络考虑了前一时刻的输出,比较适合用于预测,预测效果往往更好。
RBF神经网络的
优化神经网络:提高预测准确性和效率策略

最低0.47元/天 解锁文章
1322

被折叠的 条评论
为什么被折叠?



