Spring AI Alibaba Graph:中断!人类反馈介入,流程丝滑走完~

原文链接:Spring AI Alibaba Graph:中断!人类反馈介入,流程丝滑走完~

教程说明

说明:本教程将采用2025年5月20日正式的GA版,给出如下内容

  1. 核心功能模块的快速上手教程
  2. 核心功能模块的源码级解读
  3. Spring ai alibaba增强的快速上手教程 + 源码级解读

版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba 1.0.0.2

将陆续完成如下章节教程。本章是第十章(Graph构建智能体)下的人类反馈复原案例

代码开源如下:https://github.com/GTyingzi/spring-ai-tutorial

微信推文往届解读可参考:

第一章内容

SpringAI(GA)的chat:快速上手+自动注入源码解读

SpringAI(GA):ChatClient调用链路解读

第二章内容

SpringAI的Advisor:快速上手+源码解读

SpringAI(GA):Sqlite、Mysql、Redis消息存储快速上手

第三章内容

SpringAI(GA):Tool工具整合—快速上手

SpringAI(GA):Tool源码+工具触发链路解读

第四章内容

SpringAI(GA):结构化输出的快速上手+源码解读

第五章内容

SpringAI(GA):内存、Redis、ES的向量数据库存储—快速上手

SpringAI(GA):向量数据库理论源码解读+Redis、Es接入源码

第六章内容

SpringAI(GA):RAG快速上手+模块化解读

SpringAI(GA):RAG下的ETL快速上手

SpringAI(GA):RAG下的ETL源码解读

第七章内容

SpringAI(GA):Nacos2下的分布式MCP

SpringAI(GA):Nacos3下的分布式MCP

SpringAI(GA):MCP源码解读

SpringAI(GA): SpringAI下的MCP源码解读

第八章内容

SpringAI(GA): 多模型评估篇

第九章内容

SpringAI(GA):观测篇快速上手+源码解读

第十章内容

Spring AI Alibaba Graph:快速入门

Spring AI Alibaba Graph:多节点并行—快速上手

Spring AI Alibaba Graph:节点流式透传案例

Spring AI Alibaba Graph:分配MCP到指定节点

人类反馈复原案例

[!TIP]
在实际业务场景中,经常会遇到人类介入的场景,人类的不同操作将影响工作流不同的走向

以下实现一个简单案例:包含三个节点,扩展节点、人类节点、翻译节点

  • 扩展节点:AI 模型流式对问题进行扩展输出
  • 人类节点:通过对用户的反馈,决定是直接结束,还是接着执行翻译节点
  • 翻译节点:将问题翻译为其他英文

实战代码可见:https://github.com/GTyingzi/spring-ai-tutorial 下的 graph 目录,本章代码为其 human-node 模块

pom.xml

这里使用 1.0.0.3-SNAPSHOT。在定义 StateGraph 方面和 1.0.0.2 有些变动

<properties>
    <spring-ai-alibaba.version>1.0.0.3-SNAPSHOT</spring-ai-alibaba.version>
</properties>

<dependencies>

    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-autoconfigure-model-openai</artifactId>
    </dependency>

    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-autoconfigure-model-chat-client</artifactId>
    </dependency>

    <dependency>
        <groupId>com.alibaba.cloud.ai</groupId>
        <artifactId>spring-ai-alibaba-graph-core</artifactId>
        <version>${spring-ai-alibaba.version}</version>
    </dependency>

    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
</dependencies>

application.yml

server:
  port: 8080
spring:
  application:
    name: human-node
  ai:
    openai:
      api-key: ${AIDASHSCOPEAPIKEY}
      base-url: https://dashscope.aliyuncs.com/compatible-mode
      chat:
        options:
          model: qwen-max

config

OverAllState 中存储的字段

  • query:用户的问题
  • expandernumber:扩展的数量
  • expandercontent:扩展的内容
  • feedback:人类反馈的内容
  • humannextnode:人类反馈后的下一个节点
  • translatelanguage:翻译的目标语言,默认为英文
  • translatecontent:翻译的内容

定义 ExpanderNode,边的连接为:

START -> expander -> humanfeedback
humanfeedback -> translate
humanfeedback -> END
translate -> END
package com.spring.ai.tutorial.graph.human.config;

import com.alibaba.cloud.ai.graph.GraphRepresentation;
import com.alibaba.cloud.ai.graph.KeyStrategy;
import com.alibaba.cloud.ai.graph.KeyStrategyFactory;
import com.alibaba.cloud.ai.graph.StateGraph;
import com.alibaba.cloud.ai.graph.action.AsyncEdgeAction;
import com.alibaba.cloud.ai.graph.exception.GraphStateException;
import com.alibaba.cloud.ai.graph.state.strategy.ReplaceStrategy;
import com.spring.ai.tutorial.graph.human.dispatcher.HumanFeedbackDispatcher;
import com.spring.ai.tutorial.graph.human.node.ExpanderNode;
import com.spring.ai.tutorial.graph.human.node.HumanFeedbackNode;
import com.spring.ai.tutorial.graph.human.node.TranslateNode;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.util.HashMap;
import java.util.Map;

import static com.alibaba.cloud.ai.graph.action.AsyncNodeAction.nodeasync;

/**
 * @author yingzi
 * @since 2025/6/13
 */
@Configuration
public class GraphHumanConfiguration {

    private static final Logger logger = LoggerFactory.getLogger(GraphHumanConfiguration.class);

    @Bean
    public StateGraph humanGraph(ChatClient.Builder chatClientBuilder) throws GraphStateException {
        KeyStrategyFactory keyStrategyFactory = () -> {
            HashMap<String, KeyStrategy> keyStrategyHashMap = new HashMap<>();
            // 用户输入
            keyStrategyHashMap.put("query", new ReplaceStrategy());
            keyStrategyHashMap.put("threadid", new ReplaceStrategy());

            keyStrategyHashMap.put("expandernumber", new ReplaceStrategy());
            keyStrategyHashMap.put("expandercontent", new ReplaceStrategy());

            // 人类反馈
            keyStrategyHashMap.put("feedback", new ReplaceStrategy());
            keyStrategyHashMap.put("humannextnode", new ReplaceStrategy());

            // 是否需要翻译
            keyStrategyHashMap.put("translatelanguage", new ReplaceStrategy());
            keyStrategyHashMap.put("translatecontent", new ReplaceStrategy());
            return keyStrategyHashMap;
        };

        StateGraph stateGraph = new StateGraph(keyStrategyFactory)
                .addNode("expander", nodeasync(new ExpanderNode(chatClientBuilder)))
                .addNode("translate", nodeasync(new TranslateNode(chatClientBuilder)))
                .addNode("humanfeedback", nodeasync(new HumanFeedbackNode()))

                .addEdge(StateGraph.START, "expander")
                .addEdge("expander", "humanfeedback")
                .addConditionalEdges("humanfeedback", AsyncEdgeAction.edgeasync((new HumanFeedbackDispatcher())), Map.of(
                        "translate", "translate", StateGraph.END, StateGraph.END))
                .addEdge("translate", StateGraph.END);

        // 添加 PlantUML 打印
        GraphRepresentation representation = stateGraph.getGraph(GraphRepresentation.Type.PLANTUML,
                "human flow");
        logger.info("\n=== expander UML Flow ===");
        logger.info(representation.content());
        logger.info("==================================\n");

        return stateGraph;
    }
}

node

ExpanderNode
package com.spring.ai.tutorial.graph.human.node;

import com.alibaba.cloud.ai.graph.NodeOutput;
import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.action.NodeAction;
import com.alibaba.cloud.ai.graph.async.AsyncGenerator;
import com.alibaba.cloud.ai.graph.streaming.StreamingChatGenerator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.PromptTemplate;
import reactor.core.publisher.Flux;

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * @author yingzi
 * @since 2025/6/13
 */

public class ExpanderNode implements NodeAction {

    private static final Logger logger = LoggerFactory.getLogger(ExpanderNode.class);

    private static final PromptTemplate DEFAULTPROMPTTEMPLATE = new PromptTemplate("You are an expert at information retrieval and search optimization.\nYour task is to generate {number} different versions of the given query.\n\nEach variant must cover different perspectives or aspects of the topic,\nwhile maintaining the core intent of the original query. The goal is to\nexpand the search space and improve the chances of finding relevant information.\n\nDo not explain your choices or add any other text.\nProvide the query variants separated by newlines.\n\nOriginal query: {query}\n\nQuery variants:\n");

    private final ChatClient chatClient;

    private final Integer NUMBER = 3;

    public ExpanderNode(ChatClient.Builder chatClientBuilder) {
        this.chatClient = chatClientBuilder.build();
    }

    @Override
    public Map<String, Object> apply(OverAllState state) {
        logger.info("expander node is running.");

        String query = state.value("query", "");
        Integer expanderNumber = state.value("expandernumber", this.NUMBER);

        Flux<ChatResponse> chatResponseFlux = this.chatClient.prompt().user((user) -> user.text(DEFAULTPROMPTTEMPLATE.getTemplate()).param("number", expanderNumber).param("query", query)).stream().chatResponse();

        AsyncGenerator<? extends NodeOutput> generator = StreamingChatGenerator.builder()
                .startingNode("expanderllmstream")
                .startingState(state)
                .mapResult(response -> {
                    String text = response.getResult().getOutput().getText();
                    List<String> queryVariants = Arrays.asList(text.split("\n"));
                    return Map.of("expandercontent", queryVariants);
                }).build(chatResponseFlux);
        return Map.of("expandercontent", generator);
    }

}
HumanFeedbackNode
package com.spring.ai.tutorial.graph.human.node;

import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.StateGraph;
import com.alibaba.cloud.ai.graph.action.NodeAction;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.HashMap;
import java.util.Map;

/**
 * @author yingzi
 * @since 2025/6/19
 */

public class HumanFeedbackNode implements NodeAction {

    private static final Logger logger = LoggerFactory.getLogger(HumanFeedbackNode.class);

    @Override
    public Map<String, Object> apply(OverAllState state) {
        logger.info("humanfeedback node is running.");
        HashMap<String, Object> resultMap = new HashMap<>();
        String nextStep = StateGraph.END;

        Map<String, Object> feedBackData = state.humanFeedback().data();
        boolean feedback = (boolean) feedBackData.getOrDefault("feedback", true);
        if (feedback) {
            nextStep = "translate";
        }

        resultMap.put("humannextnode", nextStep);
        logger.info("humanfeedback node -> {} node", nextStep);
        return resultMap;
    }
}
TranslateNode
package com.spring.ai.tutorial.graph.human.node;

import com.alibaba.cloud.ai.graph.NodeOutput;
import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.action.NodeAction;
import com.alibaba.cloud.ai.graph.async.AsyncGenerator;
import com.alibaba.cloud.ai.graph.streaming.StreamingChatGenerator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.PromptTemplate;
import reactor.core.publisher.Flux;

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * @author yingzi
 * @since 2025/6/13
 */

public class TranslateNode implements NodeAction {

    private static final Logger logger = LoggerFactory.getLogger(ExpanderNode.class);

    private static final PromptTemplate DEFAULTPROMPTTEMPLATE = new PromptTemplate("Given a user query, translate it to {targetLanguage}.\nIf the query is already in {targetLanguage}, return it unchanged.\nIf you don't know the language of the query, return it unchanged.\nDo not add explanations nor any other text.\n\nOriginal query: {query}\n\nTranslated query:\n");

    private final ChatClient chatClient;

    private final String  TARGETLANGUAGE= "English";

    public TranslateNode(ChatClient.Builder chatClientBuilder) {
        this.chatClient = chatClientBuilder.build();
    }

    @Override
    public Map<String, Object> apply(OverAllState state) {
        logger.info("translate node is running.");

        String query = state.value("query", "");
        String targetLanguage = state.value("translatelanguage", TARGETLANGUAGE);

        Flux<ChatResponse> chatResponseFlux = this.chatClient.prompt().user((user) -> user.text(DEFAULTPROMPTTEMPLATE.getTemplate()).param("targetLanguage", targetLanguage).param("query", query)).stream().chatResponse();
        AsyncGenerator<? extends NodeOutput> generator = StreamingChatGenerator.builder()
                .startingNode("translatellmstream")
                .startingState(state)
                .mapResult(response -> {
                    String text = response.getResult().getOutput().getText();
                    List<String> queryVariants = Arrays.asList(text.split("\n"));
                    return Map.of("translatecontent", queryVariants);
                }).build(chatResponseFlux);
        return Map.of("translatecontent", generator);
    }
}

edge

人类节点的下一个边是条件边,由 HumanFeedbackDispatcher 控制下一步跳转到哪一个节点

package com.spring.ai.tutorial.graph.human.dispatcher;

import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.StateGraph;
import com.alibaba.cloud.ai.graph.action.EdgeAction;

/**
 * @author yingzi
 * @since 2025/6/19
 */

public class HumanFeedbackDispatcher implements EdgeAction {
    @Override
    public String apply(OverAllState state) throws Exception {
        return (String) state.value("humannextnode", StateGraph.END);
    }
}

controller

GraphHumanController
  • CompileConfig.builder().saverConfig(saverConfig).interruptBefore(“humanfeedback”):在人类反馈节点前断流
  • Sinks.Many<ServerSentEvent> sink:接收 Stream 数据
package com.spring.ai.tutorial.graph.human.controller;

import com.alibaba.cloud.ai.graph.CompileConfig;
import com.alibaba.cloud.ai.graph.CompiledGraph;
import com.alibaba.cloud.ai.graph.NodeOutput;
import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.RunnableConfig;
import com.alibaba.cloud.ai.graph.StateGraph;
import com.alibaba.cloud.ai.graph.async.AsyncGenerator;
import com.alibaba.cloud.ai.graph.checkpoint.config.SaverConfig;
import com.alibaba.cloud.ai.graph.checkpoint.constant.SaverConstant;
import com.alibaba.cloud.ai.graph.checkpoint.savers.MemorySaver;
import com.alibaba.cloud.ai.graph.exception.GraphRunnerException;
import com.alibaba.cloud.ai.graph.exception.GraphStateException;
import com.alibaba.cloud.ai.graph.state.StateSnapshot;
import com.spring.ai.tutorial.graph.human.controller.GraphProcess.GraphProcess;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.http.MediaType;
import org.springframework.http.codec.ServerSentEvent;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Sinks;

import java.util.HashMap;
import java.util.Map;

/**
 * @author yingzi
 * @since 2025/6/13
 */
@RestController
@RequestMapping("/graph/human")
public class GraphHumanController {

    private static final Logger logger = LoggerFactory.getLogger(GraphHumanController.class);

    private final CompiledGraph compiledGraph;

    @Autowired
    public GraphHumanController(@Qualifier("humanGraph") StateGraph stateGraph) throws GraphStateException {
        SaverConfig saverConfig = SaverConfig.builder().register(SaverConstant.MEMORY, new MemorySaver()).build();
        this.compiledGraph = stateGraph
                .compile(CompileConfig.builder().saverConfig(saverConfig).interruptBefore("humanfeedback").build());    }

    @GetMapping(value = "/expand", produces = MediaType.TEXTEVENTSTREAMVALUE)
    public Flux<ServerSentEvent<String>> expand(@RequestParam(value = "query", defaultValue = "你好,很高兴认识你,能简单介绍一下自己吗?", required = false) String query,
                                                @RequestParam(value = "expandernumber", defaultValue = "3", required = false) Integer expanderNumber,
                                                @RequestParam(value = "threadid", defaultValue = "yingzi", required = false) String threadId) throws GraphRunnerException {
        RunnableConfig runnableConfig = RunnableConfig.builder().threadId(threadId).build();
        Map<String, Object> objectMap = new HashMap<>();
        objectMap.put("query", query);
        objectMap.put("expandernumber", expanderNumber);

        GraphProcess graphProcess = new GraphProcess(this.compiledGraph);
        Sinks.Many<ServerSentEvent<String>> sink = Sinks.many().unicast().onBackpressureBuffer();
        AsyncGenerator<NodeOutput> resultFuture = compiledGraph.stream(objectMap, runnableConfig);
        graphProcess.processStream(resultFuture, sink);

        return sink.asFlux()
                .doOnCancel(() -> logger.info("Client disconnected from stream"))
                .doOnError(e -> logger.error("Error occurred during streaming", e));
    }

    @GetMapping(value = "/resume", produces = MediaType.TEXTEVENTSTREAMVALUE)
    public Flux<ServerSentEvent<String>> resume(@RequestParam(value = "threadid", defaultValue = "yingzi", required = false) String threadId,
                                      @RequestParam(value = "feedback", defaultValue = "true", required = false) boolean feedBack) throws GraphRunnerException {
        RunnableConfig runnableConfig = RunnableConfig.builder().threadId(threadId).build();
        StateSnapshot stateSnapshot = this.compiledGraph.getState(runnableConfig);
        OverAllState state = stateSnapshot.state();
        state.withResume();

        Map<String, Object> objectMap = new HashMap<>();
        objectMap.put("feedback", feedBack);

        state.withHumanFeedback(new OverAllState.HumanFeedback(objectMap, ""));

        // Create a unicast sink to emit ServerSentEvents
        Sinks.Many<ServerSentEvent<String>> sink = Sinks.many().unicast().onBackpressureBuffer();
        GraphProcess graphProcess = new GraphProcess(this.compiledGraph);
        AsyncGenerator<NodeOutput> resultFuture = compiledGraph.streamFromInitialNode(state, runnableConfig);
        graphProcess.processStream(resultFuture, sink);

        return sink.asFlux()
                .doOnCancel(() -> logger.info("Client disconnected from stream"))
                .doOnError(e -> logger.error("Error occurred during streaming", e));    }
}
GraphProcess
  • ExecutorService executor:配置线程池,获取 stream 流

将结果写入到 sink 中

package com.spring.ai.tutorial.graph.stream.controller.GraphProcess;

import com.alibaba.cloud.ai.graph.CompiledGraph;
import com.alibaba.cloud.ai.graph.NodeOutput;
import com.alibaba.cloud.ai.graph.streaming.StreamingOutput;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import org.bsc.async.AsyncGenerator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.http.codec.ServerSentEvent;
import reactor.core.publisher.Sinks;

import java.util.Map;
import java.util.concurrent.CompletionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class GraphProcess {

    private static final Logger logger = LoggerFactory.getLogger(GraphProcess.class);

    private final ExecutorService executor = Executors.newSingleThreadExecutor();

    private CompiledGraph compiledGraph;

    public GraphProcess(CompiledGraph compiledGraph) {
        this.compiledGraph = compiledGraph;
    }

    public void processStream(AsyncGenerator<NodeOutput> generator, Sinks.Many<ServerSentEvent<String>> sink) {
        executor.submit(() -> {
            generator.forEachAsync(output -> {
                try {
                    logger.info("output = {}", output);
                    String nodeName = output.node();
                    String content;
                    if (output instanceof StreamingOutput streamingOutput) {
                        content = JSON.toJSONString(Map.of(nodeName, streamingOutput.chunk()));
                    } else {
                        JSONObject nodeOutput = new JSONObject();
                        nodeOutput.put("data", output.state().data());
                        nodeOutput.put("node", nodeName);
                        content = JSON.toJSONString(nodeOutput);
                    }
                    sink.tryEmitNext(ServerSentEvent.builder(content).build());
                } catch (Exception e) {
                    throw new CompletionException(e);
                }
            }).thenAccept(v -> {
                // 正常完成
                sink.tryEmitComplete();
            }).exceptionally(e -> {
                sink.tryEmitError(e);
                return null;
            });
        });
    }
}
效果

调用 expand 接口,流式输出 && 断流得到最终结果

再调用 resume 接口,状态恢复续上流,接着走后续逻辑

学习交流圈

你好,我是影子,曾先后在🐻、新能源、老铁就职,现在是一名AI研发工程师,同时作为Spring AI Alibaba开源社区的Committer。目前新建了一个交流群,一个人走得快,一群人走得远,关注公众号后可获得个人微信,添加微信后备注“交流”入群。另外,本人长期维护一套飞书云文档笔记,涵盖后端、大数据系统化的面试资料,可私信免费获取

Spring AI Alibaba 主要聚焦于简化 Java 开发者在人工智能应用开发中的复杂度,提供高层次的 AI API 抽象和与云原生基础设施的深度集成方案。尽管其核心功能主要围绕自然语言处理、图像生成、语音合成等 AI 服务展开[^3],但其设计哲学和架构模式也为集成更广泛的 AI 技术(如图计算)提供了可能性。 图计算是一种处理图结构数据的计算范式,广泛应用于社交网络分析、推荐系统、知识图谱等领域。虽然目前提供的引用中并未明确提及 Spring AI Alibaba 对图计算技术的直接支持[^1],但可以从以下几个方面推测其潜在的应用或集成方式: ### 图计算技术的潜在集成路径 1. **基于统一 API 的抽象集成** Spring AI Alibaba 提供了统一的 API 接口,使得开发者能够以一致的方式调用不同类型的 AI 服务[^3]。这种设计思想可以扩展到图计算领域,例如通过定义图计算服务的抽象接口(如 `GraphComputationService`),并实现对不同图计算引擎(如 Apache Giraph、GraphX、阿里云图计算服务)的适配。这样,开发者可以通过简单的配置切换底层图计算引擎。 2. **与 Spring Cloud Alibaba 生态的融合** Spring AI AlibabaSpring Cloud Alibaba 的深度集成使得其能够借助后者的服务发现、配置管理、负载均衡等能力[^4]。在图计算场景中,这种能力可以用于构建分布式的图计算服务,支持图数据的分片处理、任务调度与结果聚合。 3. **本地部署与开源生态支持** Spring AI Alibaba 支持本地部署及与主流 AI 框架的集成[^3]。对于图计算来说,这意味着可以与如 Neo4j、JanusGraph 等图数据库进行集成,或者与 Apache TinkerPop 等图计算框架结合,构建完整的图数据处理与分析流水线。 4. **AI 与图计算的联合应用** 在推荐系统、社交网络分析等场景中,AI 与图计算常常需要联合使用。例如,使用图计算挖掘用户之间的关系网络,再结合 AI 模型进行用户兴趣预测。Spring AI Alibaba 可以通过其 AI 服务与图计算服务的协同调用,提供端到端的解决方案。 ### 示例:图计算服务的抽象接口定义 ```java public interface GraphComputationService { /** * 执行图计算任务 * @param graphData 图数据(如邻接表或边列表) * @param algorithm 计算算法(如 PageRank、最短路径等) * @return 计算结果 */ Map<String, Object> computeGraph(String graphData, String algorithm); } ``` ### 示例:基于阿里云图计算服务的实现 ```java @Service public class AliyunGraphComputationServiceImpl implements GraphComputationService { private final GraphComputeClient graphComputeClient; public AliyunGraphComputationServiceImpl(GraphComputeClient graphComputeClient) { this.graphComputeClient = graphComputeClient; } @Override public Map<String, Object> computeGraph(String graphData, String algorithm) { // 调用阿里云图计算服务 return graphComputeClient.invoke(graphData, algorithm); } } ``` ### 示例:通过配置切换图计算引擎 ```yaml graph: computation: provider: aliyun # 可选值:aliyun, neo4j, giraph 等 ``` ### 展望与建议 尽管目前 Spring AI Alibaba 的核心功能集中在通义系列大模型的集成,但其模块化设计和高度抽象的 API 为图计算技术的集成提供了良好的基础。开发者可以基于现有框架进行扩展,或期待未来官方对图计算领域的进一步支持。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值