POJ 3070 Fibonacci【矩阵快速幂】

本文介绍如何使用矩阵快速幂算法高效计算斐波那契数列中特定项的最后四位,并提供了一个C++代码实现。适用于大规模n值的计算问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description
In the Fibonacci integer sequence, F 0 = 0 , F 1 = 1 , a n d   F n = F n − 1 + F n − 2    f o r   n ≥ 2 F_0 = 0, F_1 = 1, and\ F_n = F_{n − 1} + F_{n − 2}\ \ for\ n ≥ 2 F0=0,F1=1,and Fn=Fn1+Fn2  for n2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

An alternative formula for the Fibonacci sequence is
在这里插入图片描述
Given an integer n n n , your goal is to compute the last 4 digits of F n F_n Fn .

Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n n n (where 0 ≤ n ≤ 1 , 000 , 000 , 000 0 ≤ n ≤ 1,000,000,000 0n1,000,000,000). The end-of-file is denoted by a single line containing the number − 1 −1 1 .

Output
For each test case, print the last four digits of F n F_n Fn . If the last four digits of F n F_n Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print F n F_n Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
在这里插入图片描述

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:在这里插入图片描述
Source
Stanford Local 2006

题意:求出斐波那契数列的第 n n n 项模 10000 10000 10000 后的值。


解法 矩阵快速幂

#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN = 2;
const int MOD = 10000;
struct Matrix {
	int m[MAXN][MAXN];
	Matrix() { memset(m, 0, sizeof(m)); }
	Matrix(int a1, int a2, int b1, int b2) {
		m[0][0] = a1, m[0][1] = a2, m[1][0] = b1, m[1][1] = b2;
	}
};
Matrix Multi(const Matrix& a, const Matrix& b) {
	Matrix ans;
	for (int i = 0; i < MAXN; ++i)
		for (int j = 0; j < MAXN; ++j)
			for (int k = 0; k < MAXN; ++k)
				ans.m[i][j] = (ans.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
	return ans;
}
Matrix FastPow(Matrix a, int n) {
	Matrix ans(1, 0, 0, 1);
	while (n) {
		if (n & 1) ans = Multi(a, ans);
		a = Multi(a, a);
		n >>= 1;
	}
	return ans;
}
int n;
int main() {
	while (~scanf("%d", &n)) {
		if (n == -1) break;
		if (n <= 1) { printf("%d\n", n); continue; }
		Matrix tmp = FastPow(Matrix(1, 1, 1, 0), n);
		printf("%d\n", tmp.m[0][1] % MOD);
	}
	return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值