You are given a 2D integer array ranges and two integers left and right. Each ranges[i] = [starti, endi] represents an inclusive interval between starti and endi.
Return true if each integer in the inclusive range [left, right] is covered by at least one interval in ranges. Return false otherwise.
An integer x is covered by an interval ranges[i] = [starti, endi] if starti <= x <= endi.
Example 1:
Input: ranges = [[1,2],[3,4],[5,6]], left = 2, right = 5
Output: true
Explanation: Every integer between 2 and 5 is covered:
- 2 is covered by the first range.
- 3 and 4 are covered by the second range.
- 5 is covered by the third range.
Example 2:
Input: ranges = [[1,10],[10,20]], left = 21, right = 21
Output: false
Explanation: 21 is not covered by any range.
Constraints:
1 <= ranges.length <= 501 <= starti <= endi <= 501 <= left <= right <= 50
题意:给你一个二维整数数组 ranges 和两个整数 left 和 right 。每个 ranges[i] = [starti, endi] 表示一个从 starti 到 endi 的 闭区间 。
如果闭区间 [left, right] 内每个整数都被 ranges 中 至少一个 区间覆盖,那么请你返回 true ,否则返回 false 。
已知区间 ranges[i] = [starti, endi] ,如果整数 x 满足 starti <= x <= endi ,那么我们称整数x 被覆盖了。
解法1 暴力
暴力枚举 [left, right] 区间内的每一个整数,看是否有区间覆盖了它:
class Solution {
public:
bool isCovered(vector<vector<int>>& ranges, int left, int right) {
for (int i = left; i <= right; ++i) {
bool flag = false;
for (const vector<int>& range : ranges) {
if (i >= range[0] && i <= range[1]) {
flag = true;
break;
}
}
if (!flag) return false; //没有区间覆盖这一整数
}
return true;
}
};
运行效率如下:
执行用时:4 ms, 在所有 C++ 提交中击败了89.49% 的用户
内存消耗:8.6 MB, 在所有 C++ 提交中击败了48.34% 的用户
时间复杂度为:O((right−left+1)×ranges.length)O((right - left + 1) \times ranges.length)O((right−left+1)×ranges.length) ,空间复杂度为:O(1)O(1)O(1) 。
另一种暴力方法是,遍历所有的区间,将它们覆盖的点标记在数轴上,然后查看 [left, right] 这一区间是否全部被标记:
class Solution {
public:
bool isCovered(vector<vector<int>>& ranges, int left, int right) {
bitset<60> bst;
for (const vector<int>& range : ranges)
for (int i = range[0]; i <= range[1]; ++i) bst[i] = true;
for (int i = left; i <= right; ++i) if (bst[i] == false) return false;
return true;
}
};
运行效率如下:
执行用时:8 ms, 在所有 C++ 提交中击败了42.04% 的用户
内存消耗:8.6 MB, 在所有 C++ 提交中击败了51.11% 的用户
时间复杂度为:O(ranges.length×∑i=0ranges.length−1(endi−starti+1)+(right−left+1))O(ranges.length \times \sum^{ranges.length-1}_{i=0} (end_i - start_i +1) + (right - left + 1))O(ranges.length×∑i=0ranges.length−1(endi−starti+1)+(right−left+1)) ,空间复杂度为:O(max(endi))O(max(end_i))O(max(endi)) 。不难发现,上一种暴力解法的优势更大。
解法2 差分
在第二种暴力做法上的优化,用空间换时间,用差分代替暴力标记:
class Solution {
public:
bool isCovered(vector<vector<int>>& ranges, int left, int right) {
vector<int> d(60, 0);
for (const vector<int>& range : ranges) ++d[range[0]], --d[range[1] + 1];
for (int i = 1; i < 60; ++i) d[i] += d[i - 1];
for (int i = left; i <= right; ++i) if (d[i] <= 0) return false;
return true;
}
};
运行效率如下:
执行用时:0 ms, 在所有 C++ 提交中击败了100.00% 的用户
内存消耗:8.4 MB, 在所有 C++ 提交中击败了85.51% 的用户
时间复杂度为:O(ranges.length+max(endi)+(right−left+1))O(ranges.length + max(end_i) + (right - left + 1))O(ranges.length+max(endi)+(right−left+1)) ,空间复杂度为:O(max(endi))O(max(end_i))O(max(endi)) 。

446





