POJ 3087 Shuffle'm Up(模拟)

本文介绍了一种基于扑克筹码的洗牌算法,该算法通过不断交叉洗牌并检查是否能达到特定的目标状态。文章详细解释了如何实现这一过程,并提供了一个完整的C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

A common pastime for poker players at a poker table is to shuffle stacks of chips. Shuffling chips is performed by starting with two stacks of poker chips, S1 and S2, each stack containing C chips. Each stack may contain chips of several different colors.

The actual shuffle operation is performed by interleaving a chip from S1 with a chip from S2 as shown below for C = 5:


The single resultant stack, S12, contains 2 * C chips. The bottommost chip of S12 is the bottommost chip from S2. On top of that chip, is the bottommost chip from S1. The interleaving process continues taking the 2nd chip from the bottom of S2 and placing that on S12, followed by the 2nd chip from the bottom of S1 and so on until the topmost chip from S1 is placed on top of S12.

After the shuffle operation, S12 is split into 2 new stacks by taking the bottommost C chips from S12 to form a new S1 and the topmost C chips from S12 to form a new S2. The shuffle operation may then be repeated to form a new S12.

For this problem, you will write a program to determine if a particular resultant stack S12 can be formed by shuffling two stacks some number of times.

Input

The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.

Each dataset consists of four lines of input. The first line of a dataset specifies an integer C, (1 ≤ C ≤ 100) which is the number of chips in each initial stack (S1 and S2). The second line of each dataset specifies the colors of each of the C chips in stack S1, starting with the bottommost chip. The third line of each dataset specifies the colors of each of the C chips in stack S2 starting with the bottommost chip. Colors are expressed as a single uppercase letter (A through H). There are no blanks or separators between the chip colors. The fourth line of each dataset contains 2 * C uppercase letters (A through H), representing the colors of the desired result of the shuffling of S1 and S2 zero or more times. The bottommost chip’s color is specified first.

Output

Output for each dataset consists of a single line that displays the dataset number (1 though N), a space, and an integer value which is the minimum number of shuffle operations required to get the desired resultant stack. If the desired result can not be reached using the input for the dataset, display the value negative 1 (−1) for the number of shuffle operations.

Sample Input

2
4
AHAH
HAHA
HHAAAAHH
3
CDE
CDE
EEDDCC
Sample Output

1 2
2 -1

题意:
给你两幅扑克牌和一个目标状态,你需要不断交叉洗牌,直到达到目标状态,每次交叉后,再将前后两半段分开,继续洗牌。如果能达到目标状态就输出第几组和需要的步数,不能就输出第几组和-1。

题解:

#include<iostream>
#include<cstdio>
using namespace std;
char s1[3005],s2[3005],s3[3005];
char tmp[3005];
int main()
{
	int T;
	scanf("%d",&T);
	for(int k=1;k<=T;k++)
	{
		int n;
		scanf("%d",&n);
	    getchar();//读入n后面的回车,不然会出错 
		gets(s1);
		gets(s2);
		gets(s3);
		string x=" ";
		string y=" ";
		string z=" ";
		for(int i=n;i>=1;i--)//读入字符串是从0开始,个人爱好从1开始,不要介意 
		{
			s1[i]=s1[i-1];
			s2[i]=s2[i-1];
		}
		for(int i=n*2;i>=1;i--)
		{
			s3[i]=s3[i-1];
		}
		for(int i=1;i<=n;i++)
		{
			x+=s1[i];
			y+=s2[i];
		}
		for(int i=1;i<=2*n;i++)
		{
			z+=s3[i];
		}
		bool flag=0;
		int step=0;
		while(1)
		{
			step++;
			for(int i=1;i<=n;i++)
			{
				tmp[i*2-1]=s2[i];
			    tmp[i*2]=s1[i];
			}
			string now=" ";
			for(int i=1;i<=2*n;i++)
			{
				now+=tmp[i];
			}
			if(now==z)//达到了目标状态 
			{
				flag=1;
				break;
			}
			else
			{
				string l1=" ",l2=" ";
				for(int i=1;i<=n;i++)
				{
					s1[i]=tmp[i];
					l1+=s1[i];
					s2[i]=tmp[n+i];
					l2+=s2[i];
				}
				if(l1==x&&l2==y)//回到了初始状态,说明无法达到目标状态 
				{
					break;
				}
			} 
		}
		if(flag)
		{
			printf("%d %d\n",k,step);
		}
		else
		{
			printf("%d -1\n",k);
		}
	}
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值