Transformer模型的改进-BERT

本文综述了Transformer模型的发展,从Weighted Transformer Network到Self-Attention with Relative Position Representations,再到预训练模型如BERT和GPT的出现,展示了Transformer在自然语言处理领域的应用和进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

References:

[1] Karim Ahmed, Nitish Shirish Keskar, and Richard Socher. Weighted transformer network for machine. translation. arXiv preprint arXiv:1711.02132, 2017.

[2] Shaw, P., Uszkoreit, J., Vaswani, A. Self-attention with relative position representations. arXiv preprint arXiv:1803.02155 (2018)

[3] http://www.sohu.com/a/234238473_129720

[4] https://baijiahao.baidu.com/s?id=1601234081544356769&wfr=spider&for=pc

[5] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding with unsupervised learning. Technical report, OpenAI.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina ToutanovaBERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805

[7] Matthew Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. 2017. Semi-supervised sequence tagging with bidirectional language models. In ACL.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值